Page 280 - Advances in Textile Biotechnology
P. 280
Developments in recombinant silk and other elastic protein fi bers 261
of crosslinked recombinant pro-resilin’, Nature, 437, 999–1002. doi: 10.1038/
nature04085.
ferrari, f a and capello, j (1997), ‘Biosynthesis of protein polymers’ in K. P.
McGrath and D. L. Kaplan, Protein-based materials, Boston, Birkhaüser, 405–438.
foltran, i, foresti, e, parma, b, sabatino, p and roveri, n (2008), ‘Novel biologically
inspired collagen nanofibers reconstituted by electrospinning method’, Macromol
Symp, 269, 111–118. doi: 10.1002/masy.200850914.
girotti, a, reguera, j, arias, f j, alonso, m, testera, a m and rodríguez-cabello, j
c (2004), ‘Influence of the molecular weight on the inverse temperature transition
of a model genetically engineered elastin-like pH-responsive polymer’, Macro-
molecules, 37, 3396–3400. doi: 10.1021/ma035603k.
godbey, w t and mikos, a g (2001), ‘Recent process in gene delivery using non
viral transfer complexes’, J Control Release, 72, 115–121. doi: 10.1016/S0168-
3659(01)00267-X.
gosline, j m, guerette, p a, ortlepp, c s and savage, k n (1999), ‘The mechanical
design of spider silks: from fibroin sequence to mechanical function’, J Exper Biol,
202, 3295–3303.
gowda, d c, parker, t m, harris, r d and urry, d w (1994), ‘Synthesis, characteriza-
tion and medical applications of bioelastic materials’ in C Basava and G M
Anantharamaiah, ‘Peptides: design, synthesis and biological activity’, Boston,
Birkhäuser, 81–111.
griffi ths, c m and page, m j (1997), ‘Production of heterologous proteins using the
baculovirus/insect expression system’, in J Pollard and J M Walker, Basic cell
culture protocols, Totowa, NJ, USA, Humana Press, 75, 427–440. doi: 10.1385/0-
89603-441-0:427.
grip, s, johansson, j and hedhammar, m (2009), ‘Engineered disulfi des improve
mechanical properties of recombinant spider silk’, Protein Sci, 18, 1012–1022. doi:
10.1002/pro.111.
gührs, k h, weisshart, k, grosse, f (2000), ‘Lessons from nature, protein fi bers’, Rev
Mol Biotechnol, 74, 121–134.
hallberg, b m (2008), ‘Protein production and purifi cation’, Nature Meth, 5, 135. doi:
10.1038/nmeth0408-369.
hardy, j g, romer, l m and scheibel, t r (2008), ‘Polymeric materials based on silk
proteins’, Polymer, 49, 4309–4327. doi: 10.1016/j.polymer.2008.08.006.
hartgerink, j d, beniash, e and stupp, s i (2001), ‘Self-assembly and mineralization
of peptide–amphiphile nanofi bers’, Science, 294, 1684–1688. doi: 10.1126/
science.1063187.
hu, x, vasanthavada, k, kohler, k, mcnary, s, moore, a m f, vierra, c a (2006),
‘Molecular mechanism of spider silks’, Cell Mol Life Sci, 63, 1986–1999. doi:
10.1007/s00018-006-6090-y.
huang, l, apkarian, r p and chaikof, e l (2001a), ‘High-resolution analysis of
engineered type I collagen nanofibers by electron microscopy’, Scanning, 23,
372–375.
huang, l, mcmillan, r a, apkarian, r p, pourdeyhimi, b, conticello, v p and chaikof,
e l (2000), ‘Generation of synthetic elastin-mimetic small diameter fi bers and
fi ber networks’, Macromolecules, 33, 2989–2997. doi: 10.1021/ma991858f.
huang, l, nagapudi, k, apkarian, r p and chaikof, e l (2001b), ‘Engineered collagen-
PEO nanofibers and fabrics’, J Biomater Sci, Polym Ed, 12, 979–993. doi:
10.1163/156856201753252516.
© Woodhead Publishing Limited, 2010