Page 283 - Advances in Textile Biotechnology
P. 283
264 Advances in textile biotechnology
rogers, g e (2000), ‘Genetic engineering for novel fi bres’, J Text Inst, 91, 24–31. doi:
10.1080/00405000008659540.
sankaranarayanan, r and moras, d (2001), ‘The fidelity of the translation of the
genetic code’, Acta Biochim Pol, 48, 323–335.
sawasaki, t, ogasawara, t, morishita, r and endo, y (2002), ‘A cell-free protein
synthesis system for high-throughput proteomics’, PNAS, 99, 14652–14657. doi:
10.1073/pnas.232580399.
schipperus, r, teeuwen, r l, werten, m w, egink, g and wolf, f a (2009), ‘Secreted
production of an elastin-like polypeptide by Pichia pastoris’, Appl Microbiol
Biotechnol doi: 10.1007/s00253-009-2082-9.
sill, t j and von recum, h a (2008), ‘Electrospinning: applications in drug
delivery and tissue engineering’, Biomaterials, 29, 1989–2006. doi: 10.1016/j.
biomaterials.2008.01.011.
sofi a, s, mccarthy, m b, gronowicz, g and kaplan, d l (2001), ‘Functionalized silk-
based biomaterials for bone formation’, J Biomed Mater Res, 54, 139–148. doi:
10.1002/1097-4636(200101).
sørensen, h p and mortensen, k k (2005), ‘Advanced genetic strategies for recom-
binant protein expression in Escherichia coli’, J Biotechnol, 115, 113–128. doi:
10.1016/j.jbiotec.2004.08.004.
swartz, j r (2001), ‘Advances in Escherichia coli production of therapeutic proteins’,
Curr Opin Biotechnol, 12, 195–201. doi: 10.1016/S0958-1669(00)00199-3.
teule, f, furin, w a, cooper, a r, duncan, j r and lewis, r v (2007), ‘Modifi cations
of spider silk sequences in an attempt to control the mechanical properties of the
synthetic fi bers’, J Mater Sci, 42, 8974–8985. doi: 10.1007/s10853-007-1642-6.
urry, d w (2005), ‘What sustains life?: consilient mechanisms for protein-based
machines and materials’, New York, Springer-Verlag.
urry, d w, parker, t m, reid, m c and gowda, d c (1991), ‘Biocompatibility of the
bioelastic materials, poly(GVGVP) and its gamma-irradiation cross-linked matrix
– summary of generic biological test-results’, J Bioactive Compatible Polym, 6,
263–282. doi: 10.1177/088391159100600306.
vaccaro, e and waite, j h (2001), ‘Yield and post-yield behavior of mussel byssal
thread: a self-healing biomolecular material’ Biomacromolecules, 2, 906–911. doi:
10.1021/bm0100514.
vendrely, c and scheibel, t (2007), ‘Biotechnological production of spider-silk
proteins enables new applications’, Macromol Biosci, 7, 401–409. doi: 10.1002/
mabi.200600255.
vepari, c p and kaplan, d l (2006), ‘Covalently immobilized enzyme gradients within
three dimensional porous scaffolds’, Biotechnol Bioeng, 93, 1130–1137. doi:
10.1002/bit.20833.
welsh, e r and tirrell, d a (2000), ‘Engineering the extracellular matrix: a novel
approach to polymeric biomaterials. I. Control of the physical properties of arti-
ficial protein matrices designed to support adhesion of vascular endothelial cells’,
Biomacromolecules, 1, 23–30. doi: 10.1021/bm0002914.
williams, b r, gelman, r a, poppke, d c and piez, k a (1978), ‘Collagen fi bril forma-
tion. Optimal in vitro conditions and preliminary kinetic results’, J Biol Chem,
253, 6578–6585.
winkler, s, szela, s, avtges, p, valluzzi, r, kirschner, d a and kaplan, d (1999),
‘Designing recombinant spider silk proteins to control assembly’, Int J Biol Mac-
romol, 24, 265–270. doi: 10.1016/S0141-8130(98)00088-9.
© Woodhead Publishing Limited, 2010