Page 125 - Aerodynamics for Engineering Students
P. 125

108  Aerodynamics for Engineering Students
                                                       ++w
                                         A
                                       Y      4
                                                        (  Q(x +8x,y+8yI







                                        0



                   Fig. 3.4

                   Thus, equating terms



                   and





                   (b)  In polar coordinates  Let a point P(r, 0) be on an equipotential q5  and a neigh-
                   bouring point Q(r + Sr, 0 + SO) be on an equipotential q5 + Sq5 (Fig. 3.5). By definition
                   the increase Sq5 is the line integral of the tangential component of velocity along any
                   path. For convenience choose PRQ where point R is  (I + Sr, 0). Then integrating
                   along PR and RQ where the velocities are qn and qt respectively, and are both in the
                   direction of integration:
                               Sq5  = qnSr + qt(r + Sr)SO
                                  = qnSr + qtrSO to the first order of  small quantities.






















                   Fig. 3.5
   120   121   122   123   124   125   126   127   128   129   130