Page 95 - Air pollution and greenhouse gases from basic concepts to engineering applications for air emission control
P. 95

3.3 Chemical Kinetics and Chemical Equilibrium                  69

              k is not a real constant, because it is a function of the combustion condition,
            especially the temperature. The rate constant of reaction can be determined using a
            modified Arrhenius equation


                                          B       E A
                                    k ¼ AT exp                           ð3:23Þ
                                                  RT
              When B ¼ 0; Eq. (3.23) becomes the Arrhenius equation

                                                 E A
                                     k ¼ A exp                           ð3:24Þ
                                                 RT
            where A and B are the rate coefficients, E A = Activation energy (J/mole) and
            R = Universal gas constant. The values of coefficients A, B, and E for H–O reactions
            are tabulated in Table 3.1 [1]. A more comprehensive table of rate constants for
            chemical reactions in combustion is given by Westley [18].
              A global hydrogen–oxygen reaction actually proceeds via the multiple ele-
            mentary reactions, collectively known as reaction mechanisms. These mechanisms



            Table 3.1 Rate coefficients for H–O reactions
                                    h          i n
            Reaction                   3     n 1    B      E A     Temperature
                                  A ð cm =moleÞ
                                                           (J/mole)  Range (K)
            H þ O 2 ! OH þ O      1.2   10 17       −0.91  69.1    300–2,500
            OH þ O ! O 2 þ H      1.8   10 13        0     0       300–2,500
            O þ H 2 ! OH þ H      1.5   10 7         2.0   31.6    300–2,500
            OH þ H 2 ! H 2 O þ H  1.5   10 8         1.6   13.8    300–2,500
            H þ H 2 O ! OH þ H 2  4.6   10 8         1.6   77.7    300–2,500
            O þ H 2 O ! OH þ OH   1.5   10 10        1.14  72.2    300–2,500
            H þ H þ M ! H 2 þ M
            M ¼ Ar (low P)        6.4   10 17       −1.0   0       300–5,000
            M ¼ H 2 (low P)       0.7   10 16       −0.6   0       100–5,000
            H 2 þ M ! H þ H þ M
            M = Ar (low P)        2.2   10 14        0     402     2,500–8,000
            M þ H 2 (low P)       8.8   10 14        0     402     2,500–8,000
            H þ OH þ M ! H 2 O þ M
            M ¼ H 2 O (low P)     1.4               −2.0   0       1,000–3,000
            H 2 O þ M ! H þ OH þ M
            M ¼ H 2 O (low P)     1.6   10 17        0     478     2,000–5,000
            O þ O þ M ! O 2 þ M
            M ¼ Ar (low P)        1.0   10 17       −1.0   0       300–5,000
            O 2 +M ! O+O+M
            M ¼ Ar (low P)        1.2   10 14        0     451     2,000–10,000
   90   91   92   93   94   95   96   97   98   99   100