Page 37 - Aircraft Stuctures for Engineering Student
P. 37

22  Basic elasticity

                  or substituting from Eqs (1.29)

                            (ED)2(1  + E,++)~   = (CD)2( 1 + E,)~ + (CE)2( 1 + E  ~  )  ~
                                                -2(CD)(CE)(l  +~,)(1 +~,,)siny,,
                  Noting that  (ED)2  = (CD)2 + (CE)2 and neglecting squares and higher powers of
                  small quantities this equation may be rewritten
                              ~(ED)’E,+,/~  = 2(CD)2~, + 2(CE)2~y - 2(CE)(CD)yxy

                  Dividing through by 2(ED)’  gives
                                   E,  + r/2  = E,  sin2 e + E,,  cos2 e - COS e sin ey,,   (1.30)

                  The strain E,  in the direction normal to the plane ED is found by replacing the angle 0
                  in Eq. (1.30) by 8 - 7r/2.  Hence

                                       E,  = E~ COS’  e +  sin2 e + -sin20           (1.31)
                                                             TXY
                                                              2
                    Turning our attention now to the triangle C‘F’E’ we have
                              (C‘E’)? = (C’F’)’ +    - 2(C’F’)(F’E’) cos(7r/2 - 7)   (1.32)


                  in which
                                            C’E’ = CE( 1 + E,,)
                                            C’F‘ = CF( 1 + E,)

                                            F’E’  = FE(l + E,+,/z)
                    Substituting for C’E’,  C’F’ and F’E’ in Eq. (1.32) and writing cos(.rr/2 - y) = siny
                  we find

                              (CE)2(1  +E,,)’   = (CF)2(1 + En)2 + (FE)’(1 + En+,/2)2
                                             -2(CF)(FE)(1  +&,)(I +~n+lr/dsiny       (1.33)

                  All the strains are assumed to be small  so that their squares and higher powers may be
                  ignored. Further, siny M y and Eq. (1.33) becomes

                        (CE)2(1  + 2~y) = (CF)’(1 + 2~n) + (FE)2(1 + 2~,+,/2) - 2(CF)(FE)y
                  From Fig. l.l3(a), (CE)2 = (CF)2 + (FE)2 and the above equation simplifies to
                               2(CE)2~,, ~(CF)’E, + ~(FE)’E,+,/~ - 2(CF)(FE)y
                                        =
                  Dividing through by 2(CE)2 and transposing
                                                              2
                                            E,  sin’ e + E,+~/~ COS e - E~
                                        7=          sin 9 cos 8

                                                      ~
                                                           ~
                                                  ~
                                              +
                  Substitution of E,  and E  ~  from Eqs (1.31) and (1.30) yields
                                         -_ - (E~-E~)sin2e-~,-os2e                   (1.34)
                                         7
                                         2      2           2
   32   33   34   35   36   37   38   39   40   41   42