Page 187 - Analysis and Design of Energy Geostructures
P. 187

160   Analysis and Design of Energy Geostructures


                   In extended notation, Eq. (4.48) reads

                                        1
                                   ε xx 5  σ xx 2 νσ yy 1 σ zz  2 α T 2 T 0 Þ
                                                                ð
                                        E
                                        1
                                   ε yy 5  σ yy 2 νσ zz 1 σ xx Þ 2 α T 2 T 0 Þ
                                                                ð
                                                 ð
                                        E
                                        1
                                   ε zz 5  σ zz 2 νσ xx 1 σ yy  2 α T 2 T 0 Þ
                                                                ð
                                        E
                                                      1                               ð4:50Þ
                                                ε xy 5  σ xy
                                                     2G
                                                      1
                                                ε yz 5  σ yz
                                                     2G
                                                      1
                                                ε zx 5  σ zx
                                                     2G
                   Based on Eq. (4.50), it can be remarked that strains caused by mechanical loads can
                induce both a variation in size and a variation in shape of a material, while strains
                caused by thermal loads can only cause a change in size. From Eq. (4.50) it can also be
                obtained an expression that links the volumetric strain ε v 5 ε kk 5 ε xx 1 ε yy 1 ε zz to
                the sum of the normal stresses σ kk 5 σ xx 1 σ yy 1 σ zz 5 3p. This formulation reads


                                            ε v 5  p  2 3α T 2 T 0 Þ                  ð4:51Þ
                                                       ð
                                                K
                where K is the bulk modulus of the material.
                   The expressions of the stress strain relations written thus far can be formulated in
                many other equivalent forms depending on the employed combination of the elastic
                properties of the material. Table 4.2 presents typical relationships between the elastic
                properties employed herein.

                     Table 4.2 Relationships between some elastic constants.
                                                    Parameter to define
                     Parameters   Shear         Young’s      Poisson’s   Bulk modulus,
                     available    modulus, G    modulus, E   ratio, ν    K
                     G; E                                    E 2 2G        GE
                                                                         33G 2 EÞ
                                                                          ð
                                                               2G
                     G; ν                       2G 1 1 νÞ                2G 1 1 νÞ
                                                                           ð
                                                  ð
                                                                          ð
                                                                          31 2 2νÞ
                     G; K                       9KG           3K 2 2G
                                                             23K 1 GÞ
                                                              ð
                                                3K 1 G
                     E; ν           E                                       E
                                   ð
                                  21 1 νÞ                                31 2 2νÞ
                                                                          ð
                     E; K          3KE                       3K 2 E
                                  9K 2 E                       6K
                     ν; K         3K 1 2 2νÞ    3K 1 2 2νÞ
                                    ð
                                                  ð
                                   21 1 νÞ
                                    ð
   182   183   184   185   186   187   188   189   190   191   192