Page 216 - Applied Numerical Methods Using MATLAB
P. 216

PROBLEMS   205
                  Table P4.8 Applying newtons()fsolve() for Systems of Nonlinear Equations
                                            newtons()            fsolve()

                  x 0 = [1 1  1]  x    [1.0000  -1.0000  1.0000]
                  (P4.8.1)     ||f(x)||  1.1102e-16 (1.1102e-16)

                                Flops         8158                 12964
                  x 0 = [1 1  1]  x                              [111]
                  (P4.8.2)     ||f(x)||                             0

                                Flops          990                  854
                  x 0 = [1 1  1]  x

                  (P4.8.3)     ||f(x)||
                                Flops         6611                 4735
                  x 0 = [1 1  1]  x    [1.0000  -1.0000  1.0000]

                  (P4.8.4)     ||f(x)||  4.5506e-15 (4.6576e-15)
                                Flops         18,273              21,935

                  x 0 = [1 1  1]  x
                  (P4.8.5)     ||f(x)||

                                Flops          6811                5525
                  x 0 = [1 1  1]  x                         [2.0000  1.0000  3.0000]

                  (P4.8.6)     ||f(x)||                      3.4659e-8 (2.6130e-8)
                                Flops         6191                 4884
                  x 0 = [1 1  1]  x    [1.0000  3.0000  2.0000]

                  (P4.8.7)     ||f(x)||  1.0022e-13 (1.0437e-13)
                                Flops         8055                 6102



                              2
                          2
                     2
                 (e) x + y + z = 14
                     2
                           2
                    x + 2y − z = 6                                      (P4.8.5)
                              2
                          2
                    x − 3y + z =−2
                     3
                               2
                 (f) x − 12y + z = 5
                           3
                      2
                    3x + y − 2z = 7                                     (P4.8.6)
                           2
                    x + 24y − 2sin(πz/18) = 25
   211   212   213   214   215   216   217   218   219   220   221