Page 214 - Applied Numerical Methods Using MATLAB
P. 214

PROBLEMS   203
             4.7 Newton Method for Systems of Nonlinear Equations
                Apply the routine “newtons()” (Section 4.6) and the MATLAB built-in
                routine “fsolve()” (with [x0 y0] = [1 0.5]) to solve the following systems
                of equations. Fill in Table P4.7 with the results.
                     2
                         2
                (a) x + y = 1                                           (P4.7.1)
                     2
                    x − y = 0
                (b) 5cosθ 1 + 6cos(θ 1 + θ 2 ) = 10
                                                                        (P4.7.2)
                    5sinθ 1 + 6sin(θ 1 + θ 2 ) = 4
                      2
                           2
                (c) 3x + 4y = 3
                             √                                          (P4.7.3)
                     2   2
                    x + y =    3/2
                     3
                (d) x + 10x 1 − x 2 = 5
                     1                                                  (P4.7.4)
                         3
                    x 1 + x − 10x 2 =−1
                         2
                        √
                     2            2
                (e) x −   3xy + 2y = 10
                          √                                             (P4.7.5)
                      2
                    4x + 3 3xy + y = 22
                     3
                               3
                (f) x y − y − 2x =−16
                                                                        (P4.7.6)
                         2
                    x − y =−1
                     2
                          2
                (g) x + 4y = 16                                         (P4.7.7)
                      2
                    xy = 4
                          5
                      y
                (h) xe − x + y = 3
                                                                        (P4.7.8)
                    x + y + tan x − sin y = 0
                 (i) 2log y − x = 0
                                                                        (P4.7.9)
                    xy − y = 1
                (j) 12xy − 6x =−1
                                                                       (P4.7.10)
                              2
                       2
                    60x − 180x y − 30xy = 1
             4.8 Newton Method for Systems of Nonlinear Equations
                Apply the routine “newtons()” (Section 4.6) and the MATLAB built-in
                routine “fsolve()” (with [x0y0z0] = [1 1 1]) to solve the following
                systems of equations. Fill in Table P4.8 with the results.
                (a) xyz =−1
                     2
                                2
                           2
                    x + 2y + 4z = 7                                     (P4.8.1)
                           3
                      2
                    2x + y + 6z = 7
                (b) xyz = 1
                               2
                           3
                     2
                    x + 2y + z = 4                                      (P4.8.2)
                          2
                              3
                    x + 2y − z = 2
                                2
                           2
                     2
                 (c) x + 4y + 9z = 34
                           2
                     2
                    x + 9y − 5z = 40                                    (P4.8.3)
                     2
                    x z − y = 7
                     2
                                      2
                (d) x + 2sin(yπ/2) + z = 0
                    −2xy + z = 3                                        (P4.8.4)
                           2
                    e x+y  − z = 0
   209   210   211   212   213   214   215   216   217   218   219