Page 222 - Applied Numerical Methods Using MATLAB
P. 222

APPROXIMATION ERROR OF FIRST DERIVATIVE  211
            to write
                                    h 2       h 3       h 4       h 5
                                       (2)       (3)       (4)       (5)
             f(x + h) = f(x) + hf (x) +  f  (x) +  f  (x) +  f  (x) +  f  (x) + ···
                                    2         3!        4!        5!
                                    h 2       h 3       h 4       h 5
                                       (2)       (3)       (4)       (5)
             f(x − h) = f(x) − hf (x) +  f  (x) −  f  (x) +  f  (x) −  f  (x) + ···
                                    2         3!        4!        5!
            and divide the difference between these two equations by 2h to get the central
            difference approximation for the first derivative as
                         f(x + h) − f(x − h)         h 2  (3)   h 4  (5)

              D c2 (x, h) =                = f (x) +   f  (x) +   f  (x) +· · ·
                                 2h                  3!         5!
                                                        2

                                           = f (x) + O(h )               (5.1.8)
                                 2
            which has an error of O(h ) similarly to Eqs. (5.1.5) and (5.1.7). This can also be
                                                                       4
            processed to yield an improved version having a truncation error of O(h ).
                                     f(x + h) − f(x − h)  f(x + 2h) − f(x − 2h)
             2
            2 D c2 (x, h) − D c2 (x, 2h) = 4            −
                                             2h                   2 · 2h
                                            12h 4
                                                  (5)
                                  = 3f (x) −     f  (x) −· · ·
                                             5!
                                     2
                                    2 D c1 (x, h) − D c1 (x, 2h)
                         D c4 (x, h) =
                                             2
                                            2 − 1
                                    8f(x + h) − 8f(x − h) − f(x + 2h) + f(x−2h)
                                  =
                                                        12h
                                               4

                                  = f (x) + O(h )                        (5.1.9)
              Furthermore, this procedure can be formularized into a general formula, called
            ‘Richardson’s extrapolation’, for improving the difference approximation of the
            derivatives as follows:
              <Richardson’s extrapolation>
                            n
                           2 D f,n (x, h) − D f,n (x, 2h)
              D f,n+1 (x, h) =                    (n: the order of error) (5.1.10a)
                                     n
                                    2 − 1
                            n
                           2 D b,n (x, h) − D b,n (x, 2h)
              D b,n+1 (x, h) =                                        (5.1.10b)
                                    n
                                   2 − 1
                              2n
                             2 D c,2n (x, h) − D c,2n (x, 2h)
              D c,2(n+1) (x, h) =                                     (5.1.10c)
                                       2n
                                      2 − 1
            5.2  APPROXIMATION ERROR OF FIRST DERIVATIVE

            In the previous section, we derived some difference approximation formulas
            for the first derivative. Since their errors are proportional to some power of
   217   218   219   220   221   222   223   224   225   226   227