Page 288 - Applied Probability
P. 288

12. Models of Recombination
                              276
                                    (a) m α j (x)= m α j+m (x).
                                                      m−1
                                                      k=0 m α k (x) m α j−k (y).

                                    (b) m α j (x + y)=
                                                        j+km
                                                       x
                                                   ∞

                                    (c) m α j (x)=
                                                   k=0 (j+km)!


                                         d
                                    (d)  dx m α j (x) = m α j−1 (x). for 0 ≤ j ≤ m − 1.
                                                                       m
                                                                      d
                                    (e) Consider the differential equation  dx m f(x)= kf(x) with initial
                                        conditions  d j j f(0) = c j for 0 ≤ j ≤ m − 1, where k and the c j
                                                  dx
                                        are constants. Show that
                                                              m−1
                                                               	       j      1
                                                     f(x)  =      c j k −  m α j (k m x).
                                                                        m
                                                               j=0
                                     (f) The differential equation  d m m f(x)= kf(x)+ g(x) with initial
                                                               dx
                                                   j
                                                  d
                                        conditions  dx j f(0) = c j for 0 ≤ j ≤ m − 1 has solution
                                                           x
                                                              m−1         1
                                               f(x)  =      k −  m  m α m−1 [k m (x − y)]g(y)dy
                                                          0
                                                          m−1
                                                                   j      1

                                                        +     c j k − m α j (k m x).
                                                                    m
                                                           j=0
                                                            1
                                    (g) lim x→∞ e −x m α j (x)=  m .
                                    (h) In a Poisson process of intensity 1, e −x m α j (x) is the probability
                                        that the number of random points on [0,x] equals j modulo m.
                                     (i) Relative to this Poisson process, let N x count every mth random
                                        point on [0,x]. Then N x has probability generating function
                                                                 m−1
                                                                  	     j      1
                                                               −x
                                                    P(s)  = e        s − m α j (s m x).
                                                                         m
                                                                  j=0
                                     (j) Furthermore, N x has mean
                                                                       m−1
                                                               x    e  −x
                                                    E(N x)  =     −        j m α j (x).
                                                               m    m
                                                                        j=0

                                                         x      m−1
                                    (k) lim x→∞ E(N x ) −   = −    .
                                                         m      2m
                                 8. In the count-location model, suppose that the count distribution has
                                   a log-concave generating function Q(s). Prove that the model exhibits
                                   positive or no interference [23].
   283   284   285   286   287   288   289   290   291   292   293