Page 183 - Applied Statistics And Probability For Engineers
P. 183

c05.qxd  5/13/02  1:49 PM  Page 159 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files:






                                                                   5-3 TWO CONTINUOUS RANDOM VARIABLES    159


                                               y                             y





                                                                          2000



                                                                            0
                                                0                   x         0  1000            x
                                            Figure 5-8  The joint probability  Figure 5-9 Region of integration for
                                            density function of X and Y is  the probability that X   1000 and Y
                                            nonzero over the shaded region.  2000 is darkly shaded.


                                       The probability that  X   1000 and Y   2000  is determined as the integral over the
                                   darkly shaded region in Fig. 5-9.
                                                                   1000 2000

                                              P1X   1000, Y   20002        XY  1x, y2 dy dx
                                                                        f
                                                                    0  x
                                                                           1000  2000
                                                                                    0.002y    0.001x
                                                                          6
                                                                   6   10     °   e     dy¢  e    dx

                                                                            0   x
                                                                           1000   0.002x   4
                                                                               e       e      0.001x
                                                                          6
                                                                   6   10    a    0.002   b e     dx
                                                                            0
                                                                        1000
                                                                             0.003x   4   0.001x
                                                                   0.003   e       e  e      dx
                                                                         0
                                                                          1   e  3     4  1   e  1
                                                                   0.003  ca     b   e  a       bd
                                                                           0.003          0.001
                                                                   0.003 1316.738   11.5782   0.915

                 5-3.2  Marginal Probability Distributions


                                   Similar to joint discrete random variables, we can find the marginal probability distributions
                                   of X and Y from the joint probability distribution.


                          Definition
                                       If the joint probability density function of continuous random variables X and Y is
                                       f (x, y), the marginal probability density functions of X and Y are
                                       XY
                                                   f X  1x2      XY  1x, y2 dy  and  f Y  1y2      XY  1x, y2 dx  (5-16)
                                                                                     f
                                                             f
                                                          R x                      R y
                                               denotes the set of all points in the range of (X, Y) for which X   x and
                                       where R x
                                       R denotes the set of all points in the range of (X, Y) for which Y   y
                                        y
   178   179   180   181   182   183   184   185   186   187   188