Page 223 - Applied Statistics And Probability For Engineers
P. 223

PQ220 6234F.CD(05)  5/13/02  4:51 PM  Page 11 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark






                                                                                                         5-11


                                                     2
                                   Let u   3x   1   t  24
  . Then dx    du, and this last expression above becomes

                                                                      2 2
                                                                                   2
                                                          M 1t2   e  t   t 
 2         1   e  u 
 2  du
                                                           X                12

                                   Now the integral is just the total area under a standard normal density, which is 1, so the mo-
                                   ment generating function of a normal random variable is

                                                                             2 2
                                                                 M 1t2   e  t   t 
 2
                                                                   X
                                   Differentiating this function twice with respect to t and setting t   0 in the result, we find

                                                                            2
                                             dM X  1t2                     d M X  1t2         2    2
                                                     `    ¿      and          2    `    ¿
                                                                                          2
                                                           1
                                               dt   t 0                      dt    t 0
                                   Therefore, the variance of the normal random variable is
                                                                    2
                                                                                   2
                                                                              2
                                                          2
                                                                         2
                                                             ¿                         2
                                                               2
                                       Moment generating functions have many important and useful properties. One of the
                                   most important of these is the uniqueness property. That is, the moment generating function
                                   of a random variable is unique when it exists, so if we have two random variables X and Y, say,
                                   with moment generating functions M X (t) and M Y (t), then if M X (t)   M Y (t) for all values of t,
                                   both X and Y have the same probability distribution. Some of the other useful properties of the
                                   moment generating function are summarized as follows.

                        Properties of
                           Moment      If X is a random variable and a is a constant, then
                         Generating
                                                         at
                          Functions       (1)  M X a 1t2   e M 1t2
                                                            X
                                          (2)  M aX  1t2   M 1at2
                                                         X
                                       If X , X 2 , p  ,  X n are independent random variables with moment generating functions
                                          1
                                                          (t), respectively, and if Y   X 1   X 2    p    X n , then the mo-
                                       M X 1 (t), M X 2 (t), . . . , M X n
                                       ment generating function of Y is
                                          (3)  M Y  1t2   M X 1 1t2   M X 2 1t2    p    M X n 1t2   (S5-10)



                                                                                       tX
                                                                                            at
                                                                                   at
                                       Property (1) follows from  M X a 1t2   E3e t 1X a2 4   e E1e 2   e M 1t2 . Property (2)
                                                                                               X
                                   follows from  M 1t2   E3e t 1aX2 4   E3e 1at2X 4   M 1at2 . Consider property (3) for the case
                                                aX                         X
                                   where the X’s are continuous random variables:
                                                         tY
                                                M 1t2   E1e 2   E3e t 1X 1  X 2   p  X n 2  4
                                                Y

                                                          p    e t 1x 1  x 2   p  x n 2  f  1x , x , p , x 2 dx dx p dx
                                                                            1  2     n  1   2    n
   218   219   220   221   222   223   224   225   226   227   228