Page 222 - Applied Statistics And Probability For Engineers
P. 222

PQ220 6234F.CD(05)  5/13/02  4:51 PM  Page 10 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark






               5-10


                                                                           t
                                                                                     n
                                 This last summation is the binomial expansion of [pe   (1   p)] , so
                                                                      t
                                                            M 1t2   3pe   11   p24 n
                                                             X
                                 Taking the first and second derivatives, we obtain

                                                            dM 1t2
                                                                               t
                                                                        t
                                                     M¿ 1t2    X     npe 31   p1e   124 n 1
                                                              dt
                                                      X
                                 and
                                                       2
                                                      d M 1t2
                                                                  t
                                                                                      t
                                                                              t
                                              M–1t2      X     npe 11   p   npe 231   p1e   124 n 2
                                                        dt
                                                X        2
                                 If we set t   0 in M¿ 1t2 , we obtain
                                                 X
                                                           M¿ 1t20  t 0    ¿     np
                                                                       1
                                                             X
                                 which is the mean of the binomial random variable X. Now if we set t   0 in M–1t2,
                                                                                                X
                                                        M–1t20  t 0    ¿   np11   p   np2
                                                                    2
                                                         X
                                 Therefore, the variance of the binomial random variable is
                                                     2
                                           2
                                                                                       2
                                                                            2
                                              ¿      np11   p   np2   1np2   np   np   np11   p2
                                                2
               EXAMPLE S5-6      Find the moment generating function of the normal random variable and use it to show that
                                                                                2
                                 the mean and variance of this random variable are   and   , respectively.
                                    The moment generating function is

                                                                  1
                                                                              2
                                                                            2
                                                      M 1t2        e tx  12    e  1x  2 
 12  2  dx
                                                     X


                                                                1     3x  21  t  2x   4 
 12  2
                                                                       2
                                                                                     2
                                                                                 2
                                                                             2
                                                                12    e                dx

                                 If we complete the square in the exponent, we have
                                                                               2
                                                                                            2 4
                                                         2
                                                                                 2
                                                                                        2
                                                                2
                                              2
                                             x   21   t  2x      3x   1   t  24   2 t    t
                                 and then

                                                              1
                                                                                   2 4
                                                                                 2
                                                                           2 2
                                                                                        2
                                                 M 1t2         12    e  53x 1  t  24  2 t   t   6
 12  2  dx
                                                   X


                                                                     1
                                                             2 2
                                                                                    2 2
                                                         e  t   t 
 2       12    e  11
 223x 1  t  24 
   2 dx
   217   218   219   220   221   222   223   224   225   226   227