Page 214 - Applied statistics and probability for engineers
P. 214

192     Chapter 5/Joint Probability Distributions


                                   Assuming that we can differentiate inside the summation and integral signs,
                                                              ⎧   r tx
                                                                     (
                                                              ⎪
                                                      r
                                                     d M t)  = ⎨ ∑ x  x e f x),   X discretee
                                                          (
                                                         X
                                                       dt r   ⎪  ∞ ∫  x e f x dx( ) ,  X continuous
                                                                  r tx
                                                              ⎩ −∞
                                     Now if we set t = 0 in this expression, we i nd that
                                                                  r
                                                                 d M t)  t= =  E X )
                                                                     (
                                                                                r
                                                                    X
                                                                              (
                                                                   dt  r  0
              Example 5-36     Moment-Generating Function for a Binomial Random Variable  Suppose that X has a
                               binomial distribution, that is
                                                   ⎛ n⎞
                                                              −
                                              f x) =  ⎜ ⎟  p ( −1  p) n x ,  x = 0 1 ...  n ,
                                                        x
                                                                        , ,
                                               (
                                                   ⎝
                                                    x⎠
               Determine the moment-generating function and use it to verify that the mean and variance of the binomial random
               variable are μ = np and σ = np( −  p).
                                   2
                                        1
                 From the deinition of a moment-generatingfunction, we have

                                               n   ⎛ n⎞           n  ⎛  n⎞
                                       M t ( ) = ∑  e tx ⎜ ⎟  p ( −1  p)  n x  = ∑  ⎜ ⎟  ( pe ) ( −1  p) n−x
                                                                                   −
                                                              −
                                                                           t x
                                                       x
                                         X
                                              x=0  ⎝  x⎠          x=0  ⎝  x⎠
               This last summation is the binomial expansion of [pe + ( −  p )] , so
                                                                 n
                                                         t
                                                            1
                                                                  t
                                                                     1
                                                        M t ( ) [=  pe + ( −  p)] n
                                                          X

               Taking the irst and second derivatives, we obtain
                                                    ′
                                                                           t
                                                                    t
                                                            X
                                                  M t ( ) =  dM t ( )  =  npe [ +1  p e ( −1 )] n−1
                                                    X
                                                           dt
               and
                                                    2
                                              ″
                                                       X
                                                               t
                                                                                t
                                            M t ( ) =  d M t ( )  =  npe ( −1  p npe )[+  t  1 +  p e ( −1 )] n−2
                                              X
                                                       2
                                                     dt
                              ′
               If we set t = 0 in M t( ), we obtain
                              X
                                                          ′
                                                           (
                                                        M t) | = =  μ ′ = μ =  np
                                                          X
                                                                   1
                                                              t 0
                                                                              n
               which is the mean of the binomial random variable X. Now if we set t = 0 in M t ( ),
                                                                              X
                                                  M t) | = = μ′ 2  =  np( −  p np)
                                                                      +
                                                    n
                                                                  1
                                                    (
                                                   X
                                                       t 0
               Therefore, the variance of the binomial random variable is
                                      σ = μ ′ 2 − μ 2  = np( 1− + np)  − np) 2  = np np 2  = np( 1− p)
                                                                        −
                                       2
                                                        p
                                                               (
              Example 5-37     Moment-Generating Function for a Normal Random Variable  Find the moment-generating
                               function of the normal random variable and use it to show that the mean and variance of this random
                               2
               variable are μ and σ , respectively.
                 The moment-generating function is
                                                     ∞     1
                                             M t ( ) =  ∫  e tx  e  x ( −  −μ) 2  /(2È  2  )
                                               X
                                                    −∞   σ  2π
                                                     ∞
                                                   =  ∫  1  e  x [ −  2  −2 (μ+ tÈ  2  x ) + μ  2 ]/(2σ ) dx
                                                                          σ
                                                                           2
                                                    −∞  σ  2π
   209   210   211   212   213   214   215   216   217   218   219