Page 215 - Applied statistics and probability for engineers
P. 215

Section 5-6/Moment-Generating Functions     193


                        If we complete the square in the exponent, we have
                                               x − 2(μ + tÈ  2 ) x +μ  2  = [ x − (  + È  t  2 )] 2  −μ 2σ  t  2  −σ t  2  4
                                                                     μ
                                                2
                        and then
                                                         ∞
                                                  M t ( ) =  ∫  1  e − {[ x (− μ  t + È  2 2 −2μ  t σ  2  t − σ 2 4 } (2σ/  2 ) dx
                                                                         )]
                                                    X
                                                         −∞ σ  2π
                                                                ∞  1
                                                                                2
                                                                                  2
                                                       =  e μ t+È  2 2  ∫  e −( 1 2 x−( μ + σ )] / È  2 dx
                                                                           )
                                                             t //2
                                                                          /
                                                                           [
                                                                               t
                                                               −∞ σ  2π
                        Let u = [ x − (μ + tÈ  2 )] /σ . Then dx = σ du, and the last expression above becomes
                                                                     ∞  1
                                                       M t) =  e μ t+È  2 2  ∫  e −u 2 2  du
                                                                              /
                                                                  t /2
                                                          (
                                                         X
                                                                     −∞ 2π
                     Now the integral is just the total area under a standard normal density, which is 1, so the moment-generating function
                     of a normal random variable is
                                                              M t) =  e μ t+È  2 2 t /2
                                                                 (
                                                               X
                        Differentiating this function twice with respect to t and setting t = 0 in the result, yields
                                                                      2
                                              dM t)    = μ ’  = μ and  d M t)  = μ ′  = σ 2 + μ 2
                                                                          (
                                                  (
                                                                         X
                                                 X
                                                dt        1            dt 2       2
                                                     t=0                    t=0
                     Therefore, the variance of the normal random variable is
                                                             ′
                                                       σ = μ 2 − μ =  σ + μ − μ = σ 2
                                                                             2
                                                                 2
                                                                     2
                                                                         2
                                                         2
                                            Moment generating functions have many important and useful properties. One of the most
                                         important of these is the uniqueness property. That is, the moment-generating function of
                                         a random variable is unique when it exists, so if we have two random variables X and Y, say,
                                         with moment-generating functions M t( ) and M t( ), then if M t( ) =  M t) for all values of t,
                                                                                                   (
                                                                       X
                                                                                           X
                                                                                                  Y
                                                                                Y
                                         both X and Y have the same probability distribution. Some of the other useful properties of the
                                         moment-generating function are summarized as follows.
                             Properties of
                       Moment Generating     If X is a random variable and a is a constant, then
                               Functions
                                                                 at
                                                    (1)  M X a+ ( t =  e M t)
                                                                     (
                                                             )
                                                                    X
                                                    (2)  M aX ( =  M at)
                                                                  (
                                                           t)
                                                                 X
                                             If X X 2 , ,…  X n  are independent random variables with moment generating functions
                                                1 ,
                                                ( ),   t ( ), ,  t ( ), respectively, and if Y =  X +  X +⋯ +  X n , then the moment
                                                         …
                                             M X 1  t M X 2  M X n                    1   2
                                             generating function of Y is
                                                    (3)  M t( ) =  M X ( )⋅  2  t)⋅ … ⋅  M X n  t ( )  (5-35)
                                                                  t M X (
                                                         Y
                                                                 1
                                                                              +
                                                                                   at
                                                                            (
                                                                                             at
                                            Property (1) follows from M X a+ ( t =)  E e [  t X a) ] =  e E e (  tX ) =  e M t ( ). Property (2) follows
                                                                                                X
                                         from M aX ( =  E e [  t aX) ] =  E e[  ( at X ] =  M at). Consider property (3) for the case where the X’s
                                                                  )
                                                        (
                                                                         (
                                                  t)
                                                                        X
                                         are continuous random variables:
                                                        M t ( ) =  E e (  tY ) =  E e [  t X + 2  X n ) ]
                                                                            X + +⋯
                                                                          ( 1
                                                          Y
                                                                ∞  ∞  ∞
                                                              =  ∫  ∫  ⋯  ∫  e t x ( + 2  x n )  f x x , , ,  x n ) dx dx z1  …  dx n
                                                                          x + +⋯
                                                                         1
                                                                                     2 …
                                                                                           )
                                                                                 ( 1
                                                               −∞ −∞  −∞
   210   211   212   213   214   215   216   217   218   219   220