Page 8 - Applied Statistics Using SPSS, STATISTICA, MATLAB and R
P. 8

Contents   ix


                  5.2.3   The Chi-Square Test of Independence ......................................195
                  5.2.4   Measures of Association Revisited............................................197
           5.3    Inference on Two Populations ................................................................200
                  5.3.1   Tests for Two Independent Samples..........................................201
                  5.3.2   Tests for Two Paired Samples...................................................205
           5.4    Inference on More Than Two Populations..............................................212
                  5.4.1   The Kruskal-Wallis Test for Independent Samples...................212
                  5.4.2   The Friedmann Test for Paired Samples ...................................215
                  5.4.3   The Cochran Q test....................................................................217
           Exercises...............................................................................................................218



           6  Statistical Classification                                   223

           6.1    Decision Regions and Functions.............................................................223
           6.2    Linear Discriminants...............................................................................225
                  6.2.1   Minimum Euclidian Distance Discriminant ..............................225
                  6.2.2   Minimum Mahalanobis Distance Discriminant.........................228
           6.3    Bayesian Classification...........................................................................234
                  6.3.1   Bayes Rule for Minimum Risk..................................................234
                  6.3.2   Normal Bayesian Classification ................................................240
                  6.3.3   Dimensionality Ratio and Error Estimation...............................243
           6.4    The ROC Curve ......................................................................................246
           6.5    Feature Selection.....................................................................................253
           6.6    Classifier Evaluation...............................................................................256
           6.7    Tree Classifiers .......................................................................................259
           Exercises...............................................................................................................268



           7  Data Regression                                              271

           7.1    Simple Linear Regression .......................................................................272
                  7.1.1   Simple Linear Regression Model ..............................................272
                  7.1.2   Estimating the Regression Function..........................................273
                  7.1.3   Inferences in Regression Analysis.............................................279
                  7.1.4   ANOVA Tests ...........................................................................285
           7.2    Multiple Regression................................................................................289
                  7.2.1   General Linear Regression Model.............................................289
                  7.2.2   General Linear Regression in Matrix Terms .............................289
                  7.2.3   Multiple Correlation ..................................................................292
                  7.2.4   Inferences on Regression Parameters ........................................294
                  7.2.5   ANOVA and Extra Sums of Squares.........................................296
                  7.2.6   Polynomial Regression and Other Models ................................300
           7.3    Building and Evaluating the Regression Model......................................303
                  7.3.1   Building the Model....................................................................303
                  7.3.2   Evaluating the Model ................................................................306
                  7.3.3   Case Study.................................................................................308
           7.4    Regression Through the Origin...............................................................314
   3   4   5   6   7   8   9   10   11   12   13