Page 233 - Artificial Intelligence for the Internet of Everything
P. 233
214 Artificial Intelligence for the Internet of Everything
Constantinos, J. S., Sarmaniotis, C., & Stafyla, A. (2003). CRM and customer-centric
knowledge management: an empirical research. Business Process Management Journal, 9
(5), 617–634.
Damer, T. E. (2009). Attacking faulty reasoning: A practical guide to fallacy-free reasoning.
Wadsworth Cengage Learning.
Feng, W. V., & Hirst, G. (2014). A linear- time bottom-up discourse parser with constraints
and post-editing. Proceedings of the 52nd annual meeting of the association for computational
linguistics (Vol. 1: Long papers) (pp. 511–521).
Galitsky, B. (2015). Detecting rumor and disinformation by web mining. AAAI spring
symposium.
Galitsky, B. (2016). A deep text analysis system based on open NLP. Seville, Spain: Apache Con
Europe.
Galitsky, B. (2017). Using extended tree kernel to recognize metalanguage in text. Uncertainty
modeling (pp. 71–96). Volume 683 of the series Studies in Computational Intelligence Springer.
Galitsky, B., & de la Rosa, J. L. (2011). Concept-based learning of human behavior for cus-
tomer relationship management. Information Sciences, 181(10), 2016–2035.
Galitsky, B., Gonza ´lez, M. P., & Chesn ˜evar, C. I. (2009). A novel approach for classifying
customer complaints through graphs similarities in argumentative dialogue. Decision Sup-
port Systems, 46(3), 717–729.
Galitsky, B., Ilvovsky, D., & Kuznetsov, S. O. (2015). Rhetoric map of an answer to com-
pound queries. Proceedings of the 53rd annual meeting of the association for computational lin-
guistics ACL-2 (short papers), pp. 681–686.
Galitsky, B., Ilvovsky, D., & Kuznetsov, S. O (2018). Detecting logical argumentation in text
via communicative discourse tree. Journal of Experimental & Theoretical Artificial Intel-
ligence, 30,1–27.
Galitsky, B., & Kuznetsov, S. O. (2008). Learning communicative actions of conflicting
human agents. Journal of Experimental & Theoretical Artificial Intelligence, 20(4), 277–317.
Galitsky, B., & Pampapathi, R. (2003). Deductive and inductive reasoning for processing the
claims of unsatisfied customers. International conference on industrial, engineering and other
applications of applied intelligent systems, pp. 21–30.
Garcia, A., & Simari, G. R. (2004). Defeasible logic programming: an argumentative
approach. Theory and Practice of Logic Programming, 4(1–2), 95–138.
Ghosh, D., Muresan, S., Wacholder, N., & Aakhus, M. (2014). Analyzing argumentative
discourse units in online interactions. Proceedings of the first workshop on argumentation min-
ing, Baltimore, MA, June 26 (pp. 39–48)., Association for Computational Linguistics.
Github (2018). Intense argumentation dataset. https://github.com/bgalitsky/relevance-based-
on-parse-trees/blob/master/src/test/resources/opinionsFinanceTagged.xls.zip.
Joty, S. R., Carenini, G., Ng, R. T., & Mehdad, Y. (2013). Combining intra-and multi- sen-
tential rhetorical parsing for document-level dis-course analysis: (pp. 486–496). In ACL (1).
Joty, S. R., & Moschitti, A. (2014). Discriminative reranking of discourse parses using tree
kernels. Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP).
Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2008). A large-scale classification of
English verbs. Language Resources and Evaluation Journal, 42,21–40.
Lawless, W. F., Mittu, R., Sofge, D., & Russell, S. (Eds.), (2017). Autonomy and artificial intel-
ligence: A threat or savior?. Cham, Switzerland: Springer.
Lawrence, J., & Reed, C. (2015). Combining argument mining techniques. ArgMining@
HLT-NAACL, pp. 127–136.
Lee, D. (2001). Genres, registers, text types, domains and styles: Clarifying the concepts and
navigating a path through the BNC jungle. Language Learning &. Technology, 5(3),
37–72.