Page 234 - Artificial Intelligence for the Internet of Everything
P. 234
Accessing Validity of Argumentation of Agents of the Internet of Everything 215
Mann, W., & Thompson, S. (1988). Rhetorical structure theory: towards a functional
theory of text organization. Text-Interdisciplinary Journal for the Study of Discourse, 8(3),
243–281.
Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. A. (2015). Computing numeric representa-
tions of words in a high-dimensional space. US Patent 9,037,464, Google, Inc.
Moens, M. -F., Boiy, E., Palau, R. M., & Reed, C. (2007). Automatic detection of argu-
ments in legal texts. Proceedings of the 11th international conference on artificial intelligence
and law, ICAIL ’07, Stanford, CA, pp. 225–230.
Munro, K. (2017). How to beat security threats to “internet of things” From: http://www.bbc.
com/news/av/technology-39926126/how-to-beat-security-threats-to-internet-of-
things.
Pendyala, V. S., & Figueira, S. (2015). Towards a truthful world wide web from a human-
itarian perspective. Global Humanitarian Technology Conference (pp. 8–11).
Pisarevskaya, D., Litvinova, T., & Litvinova, O. (2017). Deception detection for the Russian
language: lexical and syntactic parameters. Proceedings of the 1st workshop on natural language
processing and information retrieval/RANLP.
Russell, S., Moskowitz, I. S., & Raglin, A. (2017). Human information interaction, artificial
intelligence, and errors. In Autonomy and artificial intelligence: A threat or savior?. Cham,
Switzerland: Springer.
RussiaToday (2018). https://www.rt.com/news/425438-douma-witnesses-gas-attack-syria/.
Sardianos, C., Katakis, I. M., Petasis, G., & Karkaletsis, V. (2015). Argument extraction
from news. Proceedings of the 2nd workshop on argumentation mining, Denver, CO, USA,
pp. 56–66.
SEC 2018. Press release: Theranos, CEO Holmes, and Former President Balwani charged
with massive fraud. https://www.sec.gov/news/press-release/2018-41.
Sibley, C., Coyne, J., & Sherwood, S. (2017). Research considerations and tools for evalu-
ating human-automation interaction with future unmanned systems. In Autonomy and
artificial intelligence: A threat or savior?. Cham, Switzerland: Springer.
Stab, C., & Gurevych, I. (2014). Identifying argumentative discourse structures in persuasive
essays. Proceedings of the 2014 conference on empirical methods in natural language processing,
EMNLP ’14, Doha, Qatar (pp. 46–56).
Surdeanu, M., Hicks, T., & Valenzuela-Escarcega, M. A. (2016). Two practical rhetorical
structure theory parsers. Proceedings of the conference of the North American chapter of the asso-
ciation for computational linguistics—human language technologies: software demonstrations
(NAACL HLT).
Symeonidis, A. L., Chatzidimitriou, K. C., Athanasiadis, I. N., & Mitkas, P. A. (2007). Data
mining for agent reasoning: a synergy for training intelligent agents. Engineering Applica-
tions of Artificial Intelligence, 20(8), 1097–1111.
Thimm, M. (2014). Tweety—a comprehensive collection of java libraries for logical aspects
of artificial intelligence and knowledge representation. Proceedings of the 14th international
conference on principles of knowledge representation and reasoning (KR’14). Vienna.
Tweety 2016. https://javalibs.com/artifact/net.sf.tweety.arg/delp. Last downloaded
December 12, 2016.
van Eemeren, F. H., Grootendorst, R., & Henkemans, F. S. (1996). Fundamentals of argumen-
tation theory: A handbook of historical backgrounds and contemporary developments. Routledge:
Taylor & Francis Group.
Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cam-
bridge University Press.
Wang, W., Su, J., & Tan, C. L. (2010). Kernel based discourse relation recognition with tem-
poral ordering information. Proceedings of the 48th annual meeting of the association for com-
putational linguistics, Uppsala, Sweden, 11–16 July (pp. 710–719).