Page 234 - Artificial Intelligence for the Internet of Everything
P. 234

Accessing Validity of Argumentation of Agents of the Internet of Everything  215


              Mann, W., & Thompson, S. (1988). Rhetorical structure theory: towards a functional
                 theory of text organization. Text-Interdisciplinary Journal for the Study of Discourse, 8(3),
                 243–281.
              Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. A. (2015). Computing numeric representa-
                 tions of words in a high-dimensional space. US Patent 9,037,464, Google, Inc.
              Moens, M. -F., Boiy, E., Palau, R. M., & Reed, C. (2007). Automatic detection of argu-
                 ments in legal texts. Proceedings of the 11th international conference on artificial intelligence
                 and law, ICAIL ’07, Stanford, CA, pp. 225–230.
              Munro, K. (2017). How to beat security threats to “internet of things” From: http://www.bbc.
                 com/news/av/technology-39926126/how-to-beat-security-threats-to-internet-of-
                 things.
              Pendyala, V. S., & Figueira, S. (2015). Towards a truthful world wide web from a human-
                 itarian perspective. Global Humanitarian Technology Conference (pp. 8–11).
              Pisarevskaya, D., Litvinova, T., & Litvinova, O. (2017). Deception detection for the Russian
                 language: lexical and syntactic parameters. Proceedings of the 1st workshop on natural language
                 processing and information retrieval/RANLP.
              Russell, S., Moskowitz, I. S., & Raglin, A. (2017). Human information interaction, artificial
                 intelligence, and errors. In Autonomy and artificial intelligence: A threat or savior?. Cham,
                 Switzerland: Springer.
              RussiaToday (2018). https://www.rt.com/news/425438-douma-witnesses-gas-attack-syria/.
              Sardianos, C., Katakis, I. M., Petasis, G., & Karkaletsis, V. (2015). Argument extraction
                 from news. Proceedings of the 2nd workshop on argumentation mining, Denver, CO, USA,
                 pp. 56–66.
              SEC 2018. Press release: Theranos, CEO Holmes, and Former President Balwani charged
                 with massive fraud. https://www.sec.gov/news/press-release/2018-41.
              Sibley, C., Coyne, J., & Sherwood, S. (2017). Research considerations and tools for evalu-
                 ating human-automation interaction with future unmanned systems. In Autonomy and
                 artificial intelligence: A threat or savior?. Cham, Switzerland: Springer.
              Stab, C., & Gurevych, I. (2014). Identifying argumentative discourse structures in persuasive
                 essays. Proceedings of the 2014 conference on empirical methods in natural language processing,
                 EMNLP ’14, Doha, Qatar (pp. 46–56).
              Surdeanu, M., Hicks, T., & Valenzuela-Escarcega, M. A. (2016). Two practical rhetorical
                 structure theory parsers. Proceedings of the conference of the North American chapter of the asso-
                 ciation for computational linguistics—human language technologies: software demonstrations
                 (NAACL HLT).
              Symeonidis, A. L., Chatzidimitriou, K. C., Athanasiadis, I. N., & Mitkas, P. A. (2007). Data
                 mining for agent reasoning: a synergy for training intelligent agents. Engineering Applica-
                 tions of Artificial Intelligence, 20(8), 1097–1111.
              Thimm, M. (2014). Tweety—a comprehensive collection of java libraries for logical aspects
                 of artificial intelligence and knowledge representation. Proceedings of the 14th international
                 conference on principles of knowledge representation and reasoning (KR’14). Vienna.
              Tweety 2016. https://javalibs.com/artifact/net.sf.tweety.arg/delp. Last downloaded
                 December 12, 2016.
              van Eemeren, F. H., Grootendorst, R., & Henkemans, F. S. (1996). Fundamentals of argumen-
                 tation theory: A handbook of historical backgrounds and contemporary developments. Routledge:
                 Taylor & Francis Group.
              Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cam-
                 bridge University Press.
              Wang, W., Su, J., & Tan, C. L. (2010). Kernel based discourse relation recognition with tem-
                 poral ordering information. Proceedings of the 48th annual meeting of the association for com-
                 putational linguistics, Uppsala, Sweden, 11–16 July (pp. 710–719).
   229   230   231   232   233   234   235   236   237   238   239