Page 57 - Artificial Intelligence for the Internet of Everything
P. 57

Uncertainty Quantification in Internet of Battlefield Things  43


              Fawzi, A., Moosavi-Dezfooli, S. -M., Frossard, P., & Soatto, S. (2017). Classification regions of
                 deep neural networks. arXiv preprint arXiv:1705.09552.
              Foster, L., Waagen, A., Aijaz, N., Hurley, M., Luis, A., Rinsky, J., et al. (2009). Stable and
                 efficient Gaussian process calculations. Journal of Machine Learning Research, 10(Apr),
                 857–882.
              Girolami, M., & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian
                 Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
                 ogy), 73(2), 123–214.
              Goldfarb, D. (1970). A family of variable metric updates derived by variational means. Math-
                 ematics of Computation, 24(109), 23–26.
              Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial exam-
                 ples. arXiv preprint arXiv:1412.6572.
              Graves, A., Mohamed, A. -R., & Hinton, G. (2013). Speech recognition with deep recurrent
                 neural networks. In 2013 IEEE international conference on acoustics, speech and signal proces-
                 sing (ICASSP) (pp. 6645–6649).
              Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New York:
                 Springer-Verlag.
              Haykin, S. (1998). Neural networks: A comprehensive foundation (2nd ed). NJ: Prentice Hall.
              Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv
                 preprint arXiv:1503.02531.
              Hu, C., Pan, W., & Kwok, J. T. (2009). Accelerated gradient methods for stochastic opti-
                 mization and online learning. In Advances in neural information processing systems
                 (pp. 781–789).
              Jaderberg, M., Simonyan, K., Vedaldi, A., & Zisserman, A. (2016). Reading text in the wild
                 with convolutional neural networks. International Journal of Computer Vision, 116(1),
                 1–20.
              Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using predictive
                 variance reduction. In Advances in neural information processing systems (pp. 315–323).
              Jolliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.
              Kannan, H., Kurakin, A., & Goodfellow, I. (2018). Adversarial logit pairing. arXiv preprint
                 arXiv:1803.06373.
              Kocijan, J. (2016). Modelling and control of dynamic systems using Gaussian process models. New
                 York: Springer.
              Koppel, A., Fink, J., Warnell, G., Stump, E., & Ribeiro, A. (2016). Online learning for char-
                 acterizing unknown environments in ground robotic vehicle models. In 2016 IEEE/RSJ
                 international conference on intelligent robots and systems (IROS) (pp. 626–633).
              Kos, J., Fischer, I., & Song, D. (2017). Adversarial examples for generative models. arXiv preprint
                 arXiv:1702.06832.
              Kott, A., Swami, A., & West, B. J. (2016). The internet of battle things. Computer, 49(12),
                 70–75. https://doi.org/10.1109/MC.2016.355.
              Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the
                 witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6),
                 119–139.
              Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep con-
                 volutional neural networks. In Advances in neural information processing systems
                 (pp. 1097–1105).
              Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples in the physical world.
                 arXiv preprint arXiv:1607.02533.
              Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive
                 uncertainty estimation using deep ensembles. NIPS, pp. 1–12 (Supplemental
                 material, p. 13).
              Lee, J. D., Simchowitz, M., Jordan, M. I., & Recht, B. (2016). Gradient descent only con-
                 verges to minimizers. In Conference on learning theory (pp. 1246–1257).
   52   53   54   55   56   57   58   59   60   61   62