Page 59 - Artificial Intelligence for the Internet of Everything
P. 59

Uncertainty Quantification in Internet of Battlefield Things  45


              Papernot, N., McDaniel, P., Swami, A., & Harang, R. (2016). Crafting adversarial input
                 sequences for recurrent neural networks. In Military communications conference, MILCOM
                 2016–2016 IEEE (pp. 49–54).
              Paternain, S., Mokhtari, A., & Ribeiro, A. (2017). A second order method for nonconvex optimi-
                 zation. arXiv preprint arXiv:1707.08028.
              Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., & Ganguli, S. (2016). Exponential
                 expressivity in deep neural networks through transient chaos. In Advances in neural infor-
                 mation processing systems (pp. 3360–3368).
              Raginsky, M., Rakhlin, A., & Telgarsky, M. (2017). Non-convex learning via stochastic gradient
                 Langevin dynamics: A nonasymptotic analysis. arXiv preprint arXiv:1702.03849.
              Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced lectures on
                 machine learning (pp. 63–71). New York: Springer.
              Robbins, H., & Monro, S. (1951). A stochastic approximation method. Annals of Mathemat-
                 ical Statistics, 22(3), 400–407. https://doi.org/10.1214/aoms/1177729586.
              Roychowdhury, A., Kulis, B., & Parthasarathy, S. (2016). Robust Monte Carlo sampling
                                        e
                 using Riemannian Nos e-Poincar  Hamiltonian dynamics. In International conference on
                 machine learning (pp. 2673–2681).
              Scardapane, S., & Di Lorenzo, P. (2017). Stochastic training of neural networks via successive convex
                 approximations. arXiv preprint arXiv:1706.04769.
              Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average
                 gradient. arXiv preprint arXiv:1309.2388.
              Seeger, M., Williams, C., & Lawrence, N. (2003). Fast forward selection to speed up sparse
                 Gaussian process regression. Artificial Intelligence and Statistics, 9,1–8 (Issue: EPFL-
                 CONF-161318).
              Shaham, U., Yamada, Y., & Negahban, S. (2015). Understanding adversarial training: Increasing
                 local stability of neural nets through robust optimization. arXiv preprint arXiv:1511.05432.
              Shanno, D. F., & Phua, K. H. (1976). Algorithm 500: Minimization of unconstrained mul-
                 tivariate functions [e4]. ACM Transactions on Mathematical Software (TOMS), 2(1), 87–94.
              Smola, A. J., & Bartlett, P. L. (2001). Sparse greedy Gaussian process regression. In Advances in
                 neural information processing systems (pp. 619–625).
              Suri, N., Tortonesi, M., Michaelis, J., Budulas, P., Benincasa, G., Russell, S., et al. (2016).
                 Analyzing the applicability of internet of things to the battlefield environment. In 2016
                 International conference on military communications and information systems (ICMCIS)
                 (pp. 1–8). https://doi.org/10.1109/ICMCIS.2016.7496574.
              Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R.
                 (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.
              Vapnik, V. (2013). The nature of statistical learning theory. New York: Springer Science & Busi-
                 ness Media.
              Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin
                 dynamics. In Proceedings of the 28th international conference on machine learning (ICML-11)
                 (pp. 681–688).
              Williams, C. K., & Seeger, M. (2001). Using the Nystr€om method to speed up kernel
                 machines. In Advances in neural information processing systems (pp. 682–688).
              Yang, T., Lin, Q., & Li, Z. (2016). Unified convergence analysis of stochastic momentum methods for
                 convex and non-convex optimization. arXiv:1604.03257.
              Zheng, D. E., & Carter, W. A. (2015). Leveraging the internet of things for a more efficient and
                 effective military, Center for Strategic & International Studies (CSIS), A Report of the
                 CSIS Strategic Technologies Program, Rowman & Littlefield, Lanham, MD.
   54   55   56   57   58   59   60   61   62   63   64