Page 59 - Artificial Intelligence for the Internet of Everything
P. 59
Uncertainty Quantification in Internet of Battlefield Things 45
Papernot, N., McDaniel, P., Swami, A., & Harang, R. (2016). Crafting adversarial input
sequences for recurrent neural networks. In Military communications conference, MILCOM
2016–2016 IEEE (pp. 49–54).
Paternain, S., Mokhtari, A., & Ribeiro, A. (2017). A second order method for nonconvex optimi-
zation. arXiv preprint arXiv:1707.08028.
Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., & Ganguli, S. (2016). Exponential
expressivity in deep neural networks through transient chaos. In Advances in neural infor-
mation processing systems (pp. 3360–3368).
Raginsky, M., Rakhlin, A., & Telgarsky, M. (2017). Non-convex learning via stochastic gradient
Langevin dynamics: A nonasymptotic analysis. arXiv preprint arXiv:1702.03849.
Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced lectures on
machine learning (pp. 63–71). New York: Springer.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. Annals of Mathemat-
ical Statistics, 22(3), 400–407. https://doi.org/10.1214/aoms/1177729586.
Roychowdhury, A., Kulis, B., & Parthasarathy, S. (2016). Robust Monte Carlo sampling
e
using Riemannian Nos e-Poincar Hamiltonian dynamics. In International conference on
machine learning (pp. 2673–2681).
Scardapane, S., & Di Lorenzo, P. (2017). Stochastic training of neural networks via successive convex
approximations. arXiv preprint arXiv:1706.04769.
Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average
gradient. arXiv preprint arXiv:1309.2388.
Seeger, M., Williams, C., & Lawrence, N. (2003). Fast forward selection to speed up sparse
Gaussian process regression. Artificial Intelligence and Statistics, 9,1–8 (Issue: EPFL-
CONF-161318).
Shaham, U., Yamada, Y., & Negahban, S. (2015). Understanding adversarial training: Increasing
local stability of neural nets through robust optimization. arXiv preprint arXiv:1511.05432.
Shanno, D. F., & Phua, K. H. (1976). Algorithm 500: Minimization of unconstrained mul-
tivariate functions [e4]. ACM Transactions on Mathematical Software (TOMS), 2(1), 87–94.
Smola, A. J., & Bartlett, P. L. (2001). Sparse greedy Gaussian process regression. In Advances in
neural information processing systems (pp. 619–625).
Suri, N., Tortonesi, M., Michaelis, J., Budulas, P., Benincasa, G., Russell, S., et al. (2016).
Analyzing the applicability of internet of things to the battlefield environment. In 2016
International conference on military communications and information systems (ICMCIS)
(pp. 1–8). https://doi.org/10.1109/ICMCIS.2016.7496574.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R.
(2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.
Vapnik, V. (2013). The nature of statistical learning theory. New York: Springer Science & Busi-
ness Media.
Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 28th international conference on machine learning (ICML-11)
(pp. 681–688).
Williams, C. K., & Seeger, M. (2001). Using the Nystr€om method to speed up kernel
machines. In Advances in neural information processing systems (pp. 682–688).
Yang, T., Lin, Q., & Li, Z. (2016). Unified convergence analysis of stochastic momentum methods for
convex and non-convex optimization. arXiv:1604.03257.
Zheng, D. E., & Carter, W. A. (2015). Leveraging the internet of things for a more efficient and
effective military, Center for Strategic & International Studies (CSIS), A Report of the
CSIS Strategic Technologies Program, Rowman & Littlefield, Lanham, MD.