Page 77 - Artificial Intelligence for the Internet of Everything
P. 77
Intelligent Autonomous Things on the Battlefield 63
Gui, H., Liu, J., Tao, F., Jiang, M., Norick, B., Kaplan, L. M., et al. (2017). Embedding learn-
ing with events in heterogeneous information networks. IEEE Transactions on Knowledge
and Data Engineering, 29, 2428–2441.
Gupta, V., Mohapatra, D., Park, S. P., Raghunathan, A., & Roy, K. (2011). IMPACT:
IMPrecise adders for low-power approximate computing. In IEEE/ACM international
symposium on low power electronics and design (pp. 409–414).
Hall, B.K. 2017. Autonomous weapons systems safety, Joint Force Quarterly 86, 86-93,
Online at http://ndupress.ndu.edu/JFQ/Joint-Force-Quarterly-86/Article/1223911/
autonomous-weapons-systems-safety/.
Hefny, H., Downey, C., & Gordon, G. J. (2015). Supervised learning for dynamical system
learning. In Vol. 28. Proceedings on advances in neural information processing systems (NIPS).
Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; and Keutzer, K. Squee-
zeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size.
arXiv preprint arXiv:1602.07360 (2016).
Jadbabaie, A., Lin, J., & Morse, S. (2003). Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6),
988–1001.
Jajodia, S., Ghosh, A. K., Swarup, V., & Wang, X. S. (Eds.), (2011). Vol. 54. Moving target
defense: Creating asymmetric uncertainty for cyber threats: Berlin/Heidelberg: Springer Science
& Business Media.
Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research, 30(7), 846–894.
Koppel, A., Warnell, G., Stump, E., & Ribeiro, A. (2017). Parsimonious online learning with
kernels via sparse projections in function space. In: Proceedings on international conference on
acoustics speech signal process [submitted].
Kott, A., & Abdelzaher, T. (2014). Resiliency and robustness of complex systems and
networks. Adaptive, Dynamic, and Resilient Systems, 67,67–86.
Kott, A., & Alberts, D. S. (2017). How do you command an army of intelligent things?
Computer, 12,96–100.
Kott, A., Alberts, D. S., & Wang, C. (2015). Will cybersecurity dictate the outcome of future
wars? Computer, 48(12), 98–101.
Kott, A., Singh, R., McEneaney, W. M., & Milks, W. (2011). Hypothesis-driven informa-
tion fusion in adversarial, deceptive environments. Information Fusion, 12(2), 131–144.
Kott, A., Swami, A., & West, B. J. (2016). The internet of battle things. Computer, 49(12),
70–75.
Kott, A., Wang, C., & Erbacher, R. F. (Eds.), (2014). Cyber defense and situational awareness.
New York: Springer.
Kumar, K., & Lu, Y. -H. (2010). Cloud computing for mobile users: can offloading
computation save energy? Computer, 43,51–56.
Kurakin, A.; Goodfellow, I.J.; and Bengio, S. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.
Lenz, I., Knepper, R., & Saxena, A. (2015). DeepMPC: learning deep latent features for
model predictive control. In Robotics: Science and systems.
Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17, 1334–1373.
Long, M.; Cao, Y.; Wang, J.; and Jordan, M.I. Learning transferable features with deep
adaptation networks. arXiv preprint arXiv:1502.02791 (2015).
Mather, T. W., & Hsieh, M. A. (2011). Distributed robot ensemble control for deployment
to multiple sites. In: Robotics: Science and systems VII.
Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks, Vol. 33.
USA: Princeton University Press.