Page 78 - Artificial Intelligence for the Internet of Everything
P. 78

64    Artificial Intelligence for the Internet of Everything


          Muttik, I. (2016). Good viruses. Evaluating the risks, talk at DEFCON-2016 conference
             Online at, https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-
             16-muttik.pdf.
          Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with
             switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9),
             1520–1533.
          Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., & Swami, A. (2017). Prac-
             tical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia
             conference on computer and communications security (pp. 506–519). ACM.
          Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A. (2016). The
             limitations of deep learning in adversarial settings. In In Security and privacy (EuroS&P),
             2016 IEEE European symposium (pp. 372–387) IEEE.
          Patel, V. M., Gopalan, R., Li, R., & Chellappa, R. (2015). Visual domain adaptation: a sur-
             vey of recent advances. IEEE Signal Processing Magazine, 32(3), 53–69.
          Piekarski, B., Mathis, A., Nothwang, W., Baran, D., Kroninger, C., Sadler, B., et al. (2017).
             Micro autonomous systems and technology (MAST) 2016 annual report for program Capstone.
             Technical Report ARL-SR-0377, US Army Research Laboratory: Adelphi, MD.
          Pinto, L., Gandhi, D., Han, Y., Park, Y. -L., & Gupta, A. (2016). The curious robot: Learning
             visual representations via physical interactions (pp. 3–18). Cham: Springer International
             Publishing.
          Rasch, R., Kott, A., & Forbus, K. D. (2002). AI on the battlefield: an experimental explo-
             ration. In Proceedings of the fourteenth innovative applications of artificial intelligence conference on
             artificial intelligence. Alberta, Canada: Edmonton.
          Ren, W., & Beard, R. W. (2005). Consensus seeking in multiagent systems under dynam-
             ically changing interaction topologies. IEEE Transactions on Automatic Control, 50(5),
             655–661.
          Richter, C., Vega-Brown, W., & Roy, N. (2015). Bayesian learning for safe high-speed nav-
             igation in unknown environments. In ISRR.
          Scharre, P. (2014). Robotics on the battlefield part II: the coming swarm. Report Washington, DC:
             Center for a New American Security.
          Schenck, C., & Fox, D. (2016). Towards learning to perceive and reason about liquids. In
             Proceedings of the international symposium on experimental robotics (ISER).
          Stytz, M. R., Lichtblau, D. E., & Banks, S. B. (2005). Toward using intelligent agents to detect,
             assess, and counter cyberattacks in a network-centric environment. Report, Alexandria, VA:
             Institute for Defense Analyses.
          Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2007). Flocking in fixed and switching net-
             works. IEEE Transactions on Automatic Control, 52(5), 863–868.
          Tedrake, R., Manchester, I., Tobenkin, M., & Roberts, J. (2010). LQR-trees: feedback
             motion planning via sums-of-squares verification. International Journal of Robotics Research,
             29(8), 1038–1052.
          Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a
             mind: statistics, structure, and abstraction. Science, 331(6022), 1279–1285.
          Theron, P., Kott, A., Dras ˇar, M., Rzadca, K., LeBlanc, B., & Pihelgas, M. (2018). Towards
             an active, autonomous and intelligent cyber defense of military systems: The NATO
             AICA reference architecture. 2018 International Conference on Military Communications
             and Information Systems (ICMCIS) (pp. 1–9), IEEE.
          Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J. M., Boots, B., et al. (2017).
             Information theoretic MPC for model-based reinforcement learning. In Robotics and
             automation (ICRA), 2017 IEEE international conference on (pp. 1714–1721). IEEE.
   73   74   75   76   77   78   79   80   81   82   83