Page 122 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 122

CHAPTER


                  Evolving and Spiking

                  Connectionist Systems for                                  6

                  Brain-Inspired Artificial

                  Intelligence



                                                                        Nikola Kasabov
                     Knowledge Engineering and Discovery Research Institute e KEDRI, Auckland University of
                                                            Technology, Auckland, New Zealand


                  CHAPTER OUTLINE
                  1. From Aristotle’s Logic to Artificial Neural Networks and Hybrid Systems................112
                    1.1 Aristotle’s Logic and Rule-Based Systems for Knowledge
                        Representation and Reasoning ............................................................. 112
                    1.2 Fuzzy Logic and Fuzzy RuleeBased Systems ......................................... 113
                    1.3 Classical Artificial Neural Networks (ANN)............................................. 114
                    1.4 Integrating ANN With Rule-Based Systems: Hybrid Connectionist
                        Systems ............................................................................................. 115
                    1.5 Evolutionary Computation (EC): Learning Parameter Values of ANN
                        Through Evolution of Individual Models as Part of Populations Over
                        Generations ........................................................................................ 116
                  2. Evolving Connectionist Systems (ECOS) ...............................................................117
                    2.1 Principles of ECOS.............................................................................. 117
                    2.2 ECOS Realizations and AI Applications ................................................. 118
                  3. Spiking Neural Networks (SNN) as Brain-Inspired ANN.........................................121
                    3.1 Main Principles, Methods, and Examples of
                        SNN and Evolving SNN (eSNN)............................................................ 121
                    3.2 Applications and Implementations of SNN for AI ................................... 124
                  4. Brain-Like AI Systems Based on SNN. NeuCube. Deep Learning Algorithms............125
                    4.1 Brain-Like AI Systems. NeuCube .......................................................... 125
                    4.2 Deep Learning and Deep Knowledge Representation in NeuCube
                        SNN Models: Methods and AI Applications ........................................... 127
                        4.2.1 Supervised Learning for Classification of Learned Patterns in a
                             SNN Model ................................................................................ 128
                        4.2.2 Semisupervised Learning ............................................................. 129





                                                                                        111
                  Artificial Intelligence in the Age of Neural Networks and Brain Computing. https://doi.org/10.1016/B978-0-12-815480-9.00006-2
                  Copyright © 2019 Elsevier Inc. All rights reserved.
   117   118   119   120   121   122   123   124   125   126   127