Page 212 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 212

202    CHAPTER 9 Theory of the Brain and Mind: Visions and History




                         [63] R.C. O’Reilly, M.J. Frank, T.E. Hazy, B. Watz, PVLV: the primary value and learned
                             value Pavlovian learning algorithm, Behavioral Neuroscience 121 (2007) 31e49.
                         [64] J.S. Bowers, Grandmother cells and localist representations: a review of current
                             thinking, Language, Cognition, and Neuroscience 32 (2017) 257e273.
                         [65] T. Ljungberg, P. Apicella, W. Schultz, Responses of monkey dopamine neurons during
                             learning of behavioral reactions, Journal of Neurophysiology 67 (1992) 145e163.
                         [66] J. Mirenowicz, W. Schultz, Importance of unpredictability for reward responses in
                             primate dopamine neurons, Journal of Neurophysiology 72 (1994) 1024e1027.
                         [67] W. Schultz, P. Apicella, T. Ljungberg, Responses of monkey dopamine neurons to
                             reward and conditioned stimuli during successive steps of learning a delayed response
                             task, Journal of Neuroscience 13 (1993) 900e913.
                         [68] D. Joel, Y. Niv, E. Ruppin, Actor-critic models of the basal ganglia: new anatomical and
                             computational perspectives, Neural Networks 15 (2002) 535e547.
                         [69] Y. Niv, Reinforcement learning in the brain, Journal of Mathematical Psychology 53
                             (2009) 139e154.
                         [70] Y. Niv, M.O. Duff, P. Dayan, Dopamine, uncertainty and TD learning, Behavioral and
                             Brain Functions 1 (2005) 6 (Ch. 6).
                         [71] P.J. Werbos, Approximate dynamic programming for real-time control and neural
                             modeling, in: D.A. White, D.A. Sofge (Eds.), Handbook of Intelligent Control: Neural,
                             Fuzzy and Adaptive Approaches, Van Nostrand Reinhold, New York, 1992,
                             pp. 493e525.
                         [72] E.A. Ludvig, R.S. Sutton, E.J. Kehoe, Evaluating the TD model of classical
                             conditioning, Learning and Behavior 40 (2012) 305e319.
                         [73] F.G. Ashby, L.A. Alfonso-Reese, A.U. Turken, E.M. Waldron, A neuropsychological
                             theory of multiple systems in category learning, Psychological Review 105 (1998)
                             442e481.
                         [74] F.G. Ashby, J.M. Ennis, B.J. Spiering, A neurobiological theory of automaticity in
                             perceptual categorization, Psychological Review 114 (2007) 632e656 (Ch. 8).
                         [75] B.C. Love, T.M. Gureckis, Models in search of a brain, Cognitive, Affective, and
                             Behavioral Neuroscience 7 (2007) 90e108.
                         [76] S. Grossberg, The complementary brain: unifying brain dynamics and modularity,
                             Trends in Cognitive Sciences 4 (2000) 233e246.
                         [77] S. Grossberg, M. Versace, Spikes, synchrony, and attentive learning by laminar thala-
                             mocortical circuits, Brain Research 1218 (2008) 278e312.
                         [78] M. Dranias, S. Grossberg, D. Bullock, Dopaminergic and non-dopaminergic value
                             systems in conditioning and outcome-specific revaluation, Brain Research 1238
                             (2008) 239e287.
                         [79] S. Grossberg, D.S. Levine, Neural dynamics of attentionally modulated Pavlovian
                             conditioning: blocking, interstimulus interval, and secondary reinforcement, Applied
                             Optics 26 (1987) 5015e5030.
                         [80] N.G. Jani, D.S. Levine, A neural network theory of proportional analogy-making,
                             Neural Networks 13 (2000) 149e183.
                         [81] D.S. Levine, Neural dynamics of affect, gist, probability, and choice, Cognitive Systems
                             Research 15e16 (2012) 57e72, https://doi.org/10.1016/j.Cogsys.2011.07.002.
                         [82] D.S. Levine, N.G. Jani, D.G. Gilbert, Modeling the effects of nicotine on a continuous
                             performance task, Neurocomputing 52e54 (2003) 573e582.
                         [83] D.S. Levine, P.S. Prueitt, Modeling some effects of frontal lobe damage: novelty and
                             perseveration, Neural Networks 2 (1989) 103e116.
   207   208   209   210   211   212   213   214   215   216   217