Page 209 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 209

References    199





                  REFERENCES
                   [1] D.S. Levine, Introduction to Neural and Cognitive Modeling, Second ed., Lawrence
                      Erlbaum Associates, Mahwah, NJ, 2000. Third edition to be published by Taylor &
                      Francis, New York, 2019.
                   [2] N. Wiener, Cybernetics, Wiley, New York, 1948.
                   [3] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity,
                      Bulletin of Mathematical Biophysics 5 (1943) 115e133.
                   [4] D.E. Rumelhart, J.L. McClelland, in: Parallel Distributed Processing (Vols. 1 and 2),
                      MIT Press, Cambridge, MA, 1986.
                   [5] S. Grossberg, A neural theory of punishment and avoidance. I. Qualitative theory,
                      Mathematical Biosciences 15 (1972a) 39e67 (Ch. 2, 3, 6, Appendix 2).
                   [6] S. Grossberg, N.A. Schmajuk, Neural dynamics of attentionally-modulated Pavlovian
                      conditioning: conditioned reinforcement, inhibition, and opponent processing,
                      Psychobiology 15 (1987) 195e240.
                   [7] J.W. Brown, D. Bullock, S. Grossberg, How the basal ganglia use parallel excitatory
                      and inhibitory learning pathways to selectively respond to unexpected rewarding
                      cues, Journal of Neuroscience 19 (1999) 10502e10511.
                   [8] R.E. Suri, W. Schultz, A neural network model with dopamine-like reinforcement
                      signal that learns a spatial delayed response task, Neuroscience 91 (1999) 871e890.
                   [9] R.E. Suri, W. Schultz, Temporal difference model reproduces anticipatory neural
                      activity, Neural Computation 13 (2001) 841e862.
                  [10] R.S. Sutton, A.G. Barto, Toward a modern theory of adaptive networks: expectation and
                      prediction, Psychological Review 88 (1981) 135e170.
                  [11] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
                      Cambridge, MA, 1998.
                  [12] D.O. Hebb, The Organization of Behavior, Wiley, New York, 1949.
                  [13] C.L. Hull, Principles of Behavior, Appleton, New York, 1943.
                  [14] T.V.P. Bliss, T. Lømo, Long-lasting potentiation of synaptic transmission in the dentate
                      area of the anaesthetized rabbit following stimulation of the perforant path, Journal of
                      Physiology (London) 232 (1973) 331e356.
                  [15] E.R. Kandel, L. Tauc, Heterosynaptic facilitation in neurones of the abdominal ganglion
                      of Aplysia depilans, Journal of Physiology (London) 181 (1965) 1e27.
                  [16] M.F. Bear, Bidirectional synaptic plasticity: from theory to reality, Philosophical
                      Transactions of the Royal Society: Biological Sciences 358 (2003) 649e655.
                  [17] M.F. Bear, L.N. Cooper, F.F. Ebner, A physiological basis for a theory of synapse
                      modification, Science 237 (1987) 42e48.
                  [18] A. Kirkwood, M.F. Bear, Hebbian synapses in visual cortex, Journal of Neuroscience 14
                      (1994) 1634e1645.
                  [19] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, Washington, DC, 1962.
                  [20] P.J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the
                      Behavioral Sciences, Unpublished doctoral dissertation, Harvard University, 1974.
                  [21] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets,
                      Neural Computation 18 (2006) 1527e1554.
                  [22] Y. LeCun, Y. Bengio, G.E. Hinton, Deep learning, Nature 521 (2015) 436e444, https://
                      doi.org/10.1038/nature14539.
   204   205   206   207   208   209   210   211   212   213   214