Page 209 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 209
References 199
REFERENCES
[1] D.S. Levine, Introduction to Neural and Cognitive Modeling, Second ed., Lawrence
Erlbaum Associates, Mahwah, NJ, 2000. Third edition to be published by Taylor &
Francis, New York, 2019.
[2] N. Wiener, Cybernetics, Wiley, New York, 1948.
[3] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity,
Bulletin of Mathematical Biophysics 5 (1943) 115e133.
[4] D.E. Rumelhart, J.L. McClelland, in: Parallel Distributed Processing (Vols. 1 and 2),
MIT Press, Cambridge, MA, 1986.
[5] S. Grossberg, A neural theory of punishment and avoidance. I. Qualitative theory,
Mathematical Biosciences 15 (1972a) 39e67 (Ch. 2, 3, 6, Appendix 2).
[6] S. Grossberg, N.A. Schmajuk, Neural dynamics of attentionally-modulated Pavlovian
conditioning: conditioned reinforcement, inhibition, and opponent processing,
Psychobiology 15 (1987) 195e240.
[7] J.W. Brown, D. Bullock, S. Grossberg, How the basal ganglia use parallel excitatory
and inhibitory learning pathways to selectively respond to unexpected rewarding
cues, Journal of Neuroscience 19 (1999) 10502e10511.
[8] R.E. Suri, W. Schultz, A neural network model with dopamine-like reinforcement
signal that learns a spatial delayed response task, Neuroscience 91 (1999) 871e890.
[9] R.E. Suri, W. Schultz, Temporal difference model reproduces anticipatory neural
activity, Neural Computation 13 (2001) 841e862.
[10] R.S. Sutton, A.G. Barto, Toward a modern theory of adaptive networks: expectation and
prediction, Psychological Review 88 (1981) 135e170.
[11] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 1998.
[12] D.O. Hebb, The Organization of Behavior, Wiley, New York, 1949.
[13] C.L. Hull, Principles of Behavior, Appleton, New York, 1943.
[14] T.V.P. Bliss, T. Lømo, Long-lasting potentiation of synaptic transmission in the dentate
area of the anaesthetized rabbit following stimulation of the perforant path, Journal of
Physiology (London) 232 (1973) 331e356.
[15] E.R. Kandel, L. Tauc, Heterosynaptic facilitation in neurones of the abdominal ganglion
of Aplysia depilans, Journal of Physiology (London) 181 (1965) 1e27.
[16] M.F. Bear, Bidirectional synaptic plasticity: from theory to reality, Philosophical
Transactions of the Royal Society: Biological Sciences 358 (2003) 649e655.
[17] M.F. Bear, L.N. Cooper, F.F. Ebner, A physiological basis for a theory of synapse
modification, Science 237 (1987) 42e48.
[18] A. Kirkwood, M.F. Bear, Hebbian synapses in visual cortex, Journal of Neuroscience 14
(1994) 1634e1645.
[19] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, Washington, DC, 1962.
[20] P.J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences, Unpublished doctoral dissertation, Harvard University, 1974.
[21] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets,
Neural Computation 18 (2006) 1527e1554.
[22] Y. LeCun, Y. Bengio, G.E. Hinton, Deep learning, Nature 521 (2015) 436e444, https://
doi.org/10.1038/nature14539.