Page 228 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 228

CHAPTER


                  Deep Learning

                  Approaches to                                      11

                  Electrophysiological

                  Multivariate Time-Series

                  Analysis*



                  Francesco Carlo Morabito, Maurizio Campolo, Cosimo Ieracitano, Nadia Mammone
                       NeuroLab, DICEAM, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy


                  CHAPTER OUTLINE
                  1. Introduction .......................................................................................................220
                  2. The Neural Network Approach.............................................................................220
                  3. Deep Architectures and Learning.........................................................................222
                    3.1 Deep Belief Networks .......................................................................... 223
                    3.2 Stacked Autoencoders ......................................................................... 224
                    3.3 Convolutional Neural Networks ............................................................. 224
                  4. Electrophysiological Time-Series ........................................................................226
                    4.1 Multichannel Neurophysiological Measurements of the
                        Activity of the Brain............................................................................. 226
                    4.2 Electroencephalography (EEG) ............................................................. 226
                    4.3 High-Density Electroencephalography ................................................... 228
                    4.4 Magnetoencephalography..................................................................... 232
                  5. Deep Learning Models for EEG Signal Processing.................................................232
                    5.1 Stacked Autoencoders ......................................................................... 232
                    5.2 Summary of the Proposed Method for EEG Classification........................ 235
                    5.3 Deep Convolutional Neural Networks..................................................... 236
                    5.4 Other DL Approaches........................................................................... 236
                  6. Future Directions of Research .............................................................................236
                    6.1 DL Interpretability............................................................................... 238
                    6.2 Advanced Learning Approaches in DL ................................................... 238
                    6.3 Robustness of DL Networks.................................................................. 239
                  7. Conclusions.......................................................................................................239
                  References .............................................................................................................240
                  Further Reading ......................................................................................................243


                  * To my loved daughter, Valeria
                                                                                        219
                  Artificial Intelligence in the Age of Neural Networks and Brain Computing. https://doi.org/10.1016/B978-0-12-815480-9.00011-6
                  Copyright © 2019 Elsevier Inc. All rights reserved.
   223   224   225   226   227   228   229   230   231   232   233