Page 155 - Autonomous Mobile Robots
P. 155

138                                    Autonomous Mobile Robots

                                               15

                                               10
                                             y (m)  5


                                                0
                                               – 5
                                                 0      200     400      600     800
                                                                x (m)

                                                5
                                             Estimation error (m)  0








                                               – 5
                                                 0       10      20      30      40
                                                             Time, t (sec)

                                FIGURE 3.6 EKF based GPS solutions for Example 3.6. (a) Position estimation results
                                for Example 3.6. Top — Estimated position trajectory (dotted) overlaid on the actual tra-
                                jectory (solid). Bottom — Position estimation errors vs. time (solid and dashed curves),
                                and EKF estimate of the position error standard deviation (dotted). (b) Estimation res-
                                ults for Example 3.6. Top — Velocity estimation errors vs. time (solid curves) and EKF
                                estimate of the velocity error standard deviation (dotted). Middle — IMU bias estima-
                                tion errors vs. time. Bottom — Yaw estimation error vs. time (solid) and EKF estimate
                                of the yaw error standard deviation (dotted).


                                values (a u , a v , ω r ) are:


                                                    ˜ a u = (1 + δk u )a u − δa u + n u   (3.72)
                                                    ˜ a v = (1 + δk v )a v − δa v + n v   (3.73)
                                                    ˜ ω r = (1 + δk r )ω r − δω r + n r   (3.74)

                                where δa u , δa v , δω r are bias errors, n u , n v , n r represent white noise processes
                                with variance of (5.0 × 10 −4 , 5.0 × 10 −4 , 5.0 × 10 −6 ) respectively, and
                                (δk u , δk v , δk r ) represent sensor scale factor errors. We have included scale factor
                                errors at this point due to their importance, but will assume that the scale factor
                                errors are known to be identically zero in the following discussion.




                                 © 2006 by Taylor & Francis Group, LLC



                                FRANKL: “dk6033_c003” — 2006/3/31 — 16:42 — page 138 — #40
   150   151   152   153   154   155   156   157   158   159   160