Page 266 - Autonomous Mobile Robots
P. 266

252                                    Autonomous Mobile Robots

                                         ˙
                                                                 T ˙
                                As matrix M − 2C is skew-symmetric, σ (M − 2C)σ = 0, ∀x  = 0.
                                   Noting that
                                                                           ˜   T   ˆ   
                                                                          {W M1 } •{S M1 }˙ν
                                       T  ˜  T   ˆ                              .      
                                     σ [{W M } •{S M }]˙ν = σ 1  σ 2  ··· σ n   . .    
                                                                                T
                                                                          {W Mn } •{S Mn }˙ν
                                                                                    ˆ
                                                                           ˜
                                                          n
                                                                 T
                                                             ˜
                                                                     ˆ
                                                      =    {W Mi } •{S Mi }˙νσ i          (6.74)
                                                         i=1
                                and similarly
                                    T      T
                                                      ˆ
                                                             ˆ
                                       ˜
                                               ˆ
                                   σ [{W M } • ({S M }−{S Mc }−{S Mσ })]˙ν
                                        n
                                               T
                                                           ˆ
                                                    ˆ
                                           ˜
                                                                  ˆ
                                     =    {W Mi } • ({S Mi }−{S Mci }−{S Mσi })˙νσ i
                                       i=1
                                                         n
                                    T ˜   T                 ˜  T
                                   σ [{C M } •{SW Mc }]˙ν =  {C Mi } •{SW Mci }˙νσ i


                                                        i=1
                                                          n
                                    T     T                     T
                                       ˜
                                                            ˜
                                   σ [{  M } •{SW Mσ }]˙ν =  {  Mi } •{SW Mσi }˙νσ i


                                                         i=1
                                    T     T
                                                     ˆ
                                                            ˆ
                                       ˜
                                               ˆ
                                   σ [{W C } • ({S C }−{S Cc }−{S Cσ })]ν
                                        n
                                               T
                                                          ˆ
                                                                  ˆ
                                                    ˆ
                                           ˜
                                     =    {W Ci } • ({S Ci }−{S Cci }−{S Cσi })νσ i
                                       i=1
                                                        n
                                    T ˜   T                ˜   T
                                   σ [{C C } •{SW Cc }]ν =  {C Ci } •{SW Cci }νσ i


                                                        i=1
                                                         n
                                    T     T                    T
                                       ˜
                                                            ˜
                                   σ [{  C } •{SW Cσ }]ν =  {  Ci } •{SW Cσi }νσ i


                                                        i=1
                                                                     n
                                    T     T
                                                                                       ˆ
                                                                                 ˆ
                                                                        ˜ T ˆ
                                                            ˆ
                                               ˆ
                                                     ˆ
                                       ˜
                                   σ [{W G } • ({S G }−{S Gc }−{S Gσ })]=  W (S Gi − S Gci − S Gσi )σ i
                                                                         Gi
                                                                    i=1
                                                       n
                                    T ˜   T
                                   σ [{C G } •{SW Gc }] =  ˜ T
                                                          C SW Gci σ i
                                                           Gi

                                                       i=1
                                                        n
                                    T     T                 T
                                                          ˜
                                       ˜
                                   σ [{  G } •{SW Gσ }] =    SW Gσi σ i


                                                            Gi
                                                       i=1
                                 © 2006 by Taylor & Francis Group, LLC
                                FRANKL: “dk6033_c006” — 2006/3/31 — 16:42 — page 252 — #24
   261   262   263   264   265   266   267   268   269   270   271