Page 268 - Autonomous Mobile Robots
P. 268

254                                    Autonomous Mobile Robots

                                  T
                                             T
                                      T T
                                σ = s R + µ . Thus, we have
                                            T T       T                 T     T T T
                                           σ J λ + ρ 3 µ (1 + k λ ) ˙µ =−ρ 2 ρ 3 µ µ + s R J λ  (6.77)
                                        T T
                                Noting R J = 0 from (6.4), we then have
                                                                      T
                                                          T
                                                   V ≤−σ K σ σ − ρ 2 ρ 3 µ µ ≤ 0          (6.78)
                                                   ˙
                                As V ≥ 0 and V ≤ 0, V ∈ L ∞ . From the definition of V, it follows that σ,
                                             ˙
                                      n
                                                                                  n i
                                                                       ˆ
                                                       ˆ
                                                                           ˆ
                                          ˆ
                                                                   ˆ
                                              ˆ
                                                               ˆ
                                                           ˆ
                                                   ˆ
                                µ ∈ L , W Mi , W Ci , W Gi , C Mi , C Ci , C Gi ,   Mi ,   Ci ,   Gi ∈ L ∞ , i = 1, ... , n
                                      ∞
                                                                                ˆ ˆ
                                                                             ˆ
                                with n i denoting the compatible size of the vectors, and b m , b c , b g ∈ L ∞ .
                                   Integrating both sides of (6.78), we have
                                                     t
                                                      T
                                                    σ K σ σ ≤ V(0) − V(t) ≤ V(0)          (6.79)
                                                   0
                                           n
                                Hence σ ∈ L .
                                           2
                                                           T
                                                                R (σ − µ), hence s ∈ L
                                   From (6.28), we have s = (R R) −1 T               m  since R is
                                                                                     ∞
                                                                                  m
                                bounded. From Lemma 6.2, it can be concluded that e z , ˙e z ∈ L .
                                                                                  ∞
                                   From (6.27), (6.29), and (6.31), we have
                                                  ˆ ˙
                                    ˆ
                                                                   ˆ
                                                                               ˆ
                                         ˆ
                                   M ˙ν + Cν + G = M(R˙z r + R¨z r −˙µ) + C(R˙z r − µ) + G
                                              ˆ
                                                                                     T
                                                                                   ˆ
                                                                          ˆ
                                                                      ˆ
                                                                ˆ
                                                  ˆ ˙
                                               = M(R˙z r + R¨z r ) + CR˙z r + G − Cµ + ρ −1 MJ λ  (6.80)
                                                                                3
                                From (6.26), it is known that
                                                     ˙ q = R˙z r + Rs                     (6.81)
                                                         ˙
                                                                    ˙
                                                     ¨ q = R˙z r + R¨z r + Rs + R˙s       (6.82)
                                                                                         T
                                Replacing τ by (6.51) in dynamic equation (6.1) by noting f = J (q)λ,
                                Equations (6.80)–(6.82), the closed-loop system becomes
                                   MRs + MR˙s + CRs − (M − M)(R˙z r + R¨z r ) − (C − C)R˙z r − (G − G)
                                                       ˆ
                                                              ˙
                                     ˙
                                                                          ˆ
                                                                                      ˆ
                                                                 n  n

                                        ˆ                    ˆ
                                      + Cµ + K σ σ + K s sgn(σ) + b m  ¯ φ m ij |σ i ˙ν j |
                                                                i=1 j=1
                                           n  n              n

                                        ˆ                 ˆ
                                      + b c      ¯ φ c ij  |σ i ν j |+ b g  ¯ φ g i  |σ i |− τ d
                                          i=1 j=1           i=1
                                                      T
                                               ˆ
                                        = (ρ −1 M + I n )J λ                              (6.83)
                                            3
                                 © 2006 by Taylor & Francis Group, LLC
                                FRANKL: “dk6033_c006” — 2006/3/31 — 16:42 — page 254 — #26
   263   264   265   266   267   268   269   270   271   272   273