Page 157 - Autonomous Mobile Robots
P. 157

140                                    Autonomous Mobile Robots

                                for the error state (used to implement the EKF) is

                                                                                
                                        δ˙n                                         δn
                                              0  0  1  0   0     0       0    0     
                                               0  0  0  1   0     0       0     
                                               
                                                                                    
                                       δ˙e                                    0 δe 
                                                                                   
                                                                                
                                                                                    
                                                0  0  0  0      cos ψ  − sin ψ  
                                                                                  δv n
                                       δ˙v n              −ˆa e               0     
                                               
                                                                                  
                                             0  0  0  0   ˆ a n  sin ψ  cos ψ  0    
                                      δ˙v e                                      δv e 
                                                                                
                                                                                    
                                               0  0  0  0   0     0       0     
                                             = 
                                                                                    
                                      δ ˙ ψ                                   1 δψ 
                                                                                   
                                                                                
                                                                                    
                                                0  0  0  0  0     0       0     
                                                                                  δa u
                                                                              0     
                                               
                                        δ˙a u 
                                                                                   
                                             0  0  0  0   0     0       0    0    
                                      δ˙a v                                      δa v 
                                                                                
                                                0  0  0  0   0     0       0    0
                                        δ ˙ω r                                      δω r
                                                    0      0     0  0  0  0
                                                                          
                                                  0       0     0  0  0  0  n u  
                                                                             
                                                 
                                                                           
                                                                              
                                                                           
                                                  cos ψ  − sin ψ  0  0  0  0 n v 
                                                                          
                                                                                
                                                 sin ψ   cos ψ  0  0  0        
                                                                          
                                                                             
                                                                          0 n r 
                                               +                                      (3.75)
                                                  0       0     1  0  0       
                                                 
                                                                             
                                                                          0  n b 1 
                                                                              
                                                   0      0     0  1  0   
                                                                         0 n b 2 
                                                                           
                                                                          
                                                  0       0     0  0  1  0 n b 3
                                                    0      0     0  0  0  1
                                   where

                                               ˆ a n  cos ˆ ψ  − sin ˆ ψ  ˜ a u  ˆ n ˆa u
                                                   =                    = C b             (3.76)
                                               ˆ a e  sin ˆ ψ  cos ˆ ψ  ˜ a v  ˆ a v
                                The clock model and clock error states must also be appended. The resulting
                                equation can be written as
                                                     δ˙ x ins = F ins δx ins +  w ins     (3.77)
                                With the variances specified above, the matrix Q is known. Note that
                                in this approach the matrices Q and R are well defined based on the
                                physics of the problem; they are not ad hoc tuning parameters as they were
                                in Section 3.3.3.
                                   Between GPS measurement epochs that are separated by 1 sec (i.e., t ∈
                                [k, k + 1) sec for the (k + 1)th epoch) the INS propagates the state estimate
                                using the IMU data. The INS also propagates the error covariance matrix P
                                according to Equation (3.40). The error covariance propagation does depend
                                 © 2006 by Taylor & Francis Group, LLC
                                FRANKL: “dk6033_c003” — 2006/3/31 — 16:42 — page 140 — #42
   152   153   154   155   156   157   158   159   160   161   162