Page 269 - Autonomous Mobile Robots
P. 269

Adaptive Neural-Fuzzy Control of Mobile Robots             255

                              Invoking (6.44)–(6.46) and (6.47)–(6.49), Equation (6.83) then becomes

                                                        T
                                                                      ∗ T
                                                            ˆ
                                MRs + MR˙s + CRs − ([{W M } •{S M }]−[{W } •{S M }])(R˙z r + R¨z r )
                                                                                 ˙
                                  ˙
                                                     ˆ
                                                                      M
                                            T             ∗ T
                                         ˆ      ˆ
                                    − ([{W C } •{S C }]−[{W } •{S C }])R˙z r
                                                          C
                                                          ∗ T
                                            T
                                                ˆ
                                    − ([{W G } •{S G }]−[{W } •{S G }]) + Cµ
                                                                      ˆ
                                         ˆ
                                                          G
                                                          n  n              n  n

                                                       ˆ                 ˆ
                                    + K σ σ + K s sgn(σ) + b m  ¯ φ m ij  |σ i ˙ν j |+ b c  ¯ φ c ij |σ i ν j |
                                                         i=1 j=1            i=1 j=1
                                         n

                                      ˆ                ˙
                                    + b g   ¯ φ g i  |σ i |+ E M (R˙z r + R¨z r ) + E C R˙z r + E G − τ d
                                         i=1
                                          −1        T
                                             ˆ
                                      = (ρ  M + I n )J λ                               (6.84)
                                          3
                              Since M(q) is nonsingular, multiplying J(q)M −1 (q) on both sides of (6.84)
                              yields

                                                        T
                                                                     ∗ T
                                                            ˆ
                                                    ˆ
                                JRs + JM −1  CRs − ([{W M } •{S M }]−[{W } •{S M }])(R˙z r + R¨z r )
                                  ˙
                                                                                 ˙
                                                                     M
                                             T            ∗ T
                                          ˆ      ˆ
                                     − ([{W C } •{S C }]−[{W } •{S C }])R˙z r
                                                          C
                                             T
                                                          ∗ T
                                          ˆ
                                                 ˆ
                                     − ([{W G } •{S G }]−[{W } •{S G }]) + Cµ
                                                                       ˆ
                                                          G
                                                           n  n              n  n

                                                       ˆ                  ˆ
                                     + K σ σ + K s sgn(σ) + b m  ¯ φ m ij  |σ i ˙ν j |+ b c  ¯ φ c ij  |σ i ν j |
                                                          i=1 j=1           i=1 j=1
                                          n                                      !

                                       ˆ               ˙
                                     + b g   ¯ φ g i  |σ i |+ E M (R˙z r + R¨z r ) + E C R˙z r + E G − τ d
                                         i=1
                                            −1  −1       T
                                       = JM   (ρ  M + I n )J λ                         (6.85)
                                                  ˆ
                                                3
                                                                    m
                                 Since we have established that e z , ˙e z ∈ L , from Assumption 6.4 and
                                                                    ∞
                                                                       m
                              (6.24), it can be concluded that ˙z r (t), ¨z r (t) ∈ L .As r is shown to be
                                                                       ∞
                                                                             n
                              bounded, so is ˙z from (6.26). Hence, ˙q(t) = R˙z(t) ∈ L . It follows that
                                                                             ∞
                                                                              n
                                               ˆ
                              M(q), M(q), C(q, ˙q), C(q, ˙q) ∈ L n×n , and G(q), G(q) ∈ L . Thus, the left
                                                                      ˆ
                                   ˆ
                                                         ∞                    ∞
                              hand side of (6.85) is bounded. In fact, ρ 3 can be properly chosen to keep
                                −1
                                  ˆ
                              (ρ  M + I n ) on the right hand side of (6.85) from being singular. Hence, we
                                3
                              have λ ∈ L n−m .As λ d is bounded, so are e λ and Bτ.
                                       ∞
                                                                n
                                 From (6.1), we can conclude that ¨q ∈ L .
                                                                ∞
                              © 2006 by Taylor & Francis Group, LLC
                                FRANKL: “dk6033_c006” — 2006/3/31 — 16:42 — page 255 — #27
   264   265   266   267   268   269   270   271   272   273   274