Page 135 - Basic Structured Grid Generation
P. 135

124  Basic Structured Grid Generation

                                            ∂ξ   ∂η           ∂ξ          ∂η

                                         ν     +      − (1 + µ)  − (1 − µ)   = 0,          (5.28)
                                            ∂x   ∂y           ∂y          ∂x
                        which are equivalent to
                                                     ∂ξ    ∂ξ     ∂η
                                                   β    + γ   =−     ,                     (5.29)
                                                     ∂x    ∂y     ∂x
                                                     ∂ξ    ∂ξ    ∂η
                                                   α    + β   =    ,                       (5.30)
                                                     ∂x    ∂y    ∂y
                                       2
                                                                2
                                  (1−µ) +ν  2     −2ν       (1+µ) +ν  2
                        where α =         , β =       , γ =         . Show that
                                      2
                                                   2
                                                                2
                                   1−µ −ν  2    1−µ −ν  2    1−µ −ν  2
                                                             2
                                                       αγ − β = 1.                         (5.31)
                                                     ∂f    ∂f
                          We also have, since H(z, z) =   ,
                                                     ∂z  ∂z
                                                     	  	 2
                                                     	 ∂f

                                                     	  ∂z
                                       2    2    2
                                |H(z, z)| = µ + ν =
                                                        	 2
                                                     	 ∂f

                                                      ∂z

                                                       2             2
                                              ∂ξ   ∂η       ∂ξ   ∂η

                                                −       +     +                      √
                                              ∂x   ∂y       ∂y   ∂x       g 11 + g 22 − 2 g
                                                                      =              √ ,
                                                      2              2
                                         =
                                             ∂ξ   ∂η        ∂ξ    ∂η      g 11 + g 22 + 2 g

                                                +      + −     +
                                             ∂x   ∂y        ∂y    ∂x
                        using eqns (5.25), (5.26), (1.158), (1.160), and (1.162). The identity
                                                           2
                                                               2
                                                    2(1 + µ + ν )   g 11 + g 22
                                            α + γ =               =    √                   (5.32)
                                                          2
                                                      1 − µ − ν 2        g
                        then follows.
                          In the case of conformal mapping, we have α = γ = 1, and β = 0, and eqns (5.29),
                        (5.30) reduce to the Cauchy-Riemann equations. More generally, these equations form
                        a pair of first-order partial differential equations which could be used to generate a grid
                        for some choice of µ, ν. From eqns (1.162) the inverse equations can immediately be
                        written as
                                                    ∂x     ∂y    ∂x
                                                       = α    − β   ,                      (5.33)
                                                    ∂ξ     ∂η    ∂η
                                                    ∂y     ∂y    ∂x
                                                       = β    − γ   .                      (5.34)
                                                    ∂ξ     ∂η    ∂η
                        Exercise 3. Show that the Jacobian of the transformation from (ξ, η) to (x, y) can be
                        expressed as
                                                     
       2        2     
       2        2
                              √    ∂x ∂y   ∂x ∂y    1   ∂x       ∂x       1    ∂y       ∂y
                          J =  g =       −       =            +         =           +          .
                                    ∂ξ ∂η  ∂η ∂ξ    α   ∂ξ       ∂η       γ    ∂ξ       ∂η
                                                                                           (5.35)
   130   131   132   133   134   135   136   137   138   139   140