Page 18 - Basic Structured Grid Generation
P. 18

Mathematical preliminaries – vector and tensor analysis  7

                          The cofactors of the matrix L in eqn (1.22) are the various background carte-
                        sian components of (g j × g k ), which may be expressed, with the notation used in
                        eqn (1.18), as
                                  α 1 = y η z ς − y ς z η ,  α 2 = x ς z η − x η z ς ,  α 3 = x η y ς − x ς y η

                                  β 1 = y ς z ξ − y ξ z ς ,  β 2 = x ξ z ς − x ς z ξ ,  β 3 = x ς y ξ − x ξ y ς  (1.35)
                                   γ 1 = y ξ z η − y η z ξ ,  γ 2 = x η z ξ − x ξ z η ,  γ 3 = x ξ y η − x η y ξ
                        so that
                        g 2 × g 3 = α 1 i + α 2 j + α 3 k,  g 3 × g 1 = β 1 i + β 2 j + β 3 k,  g 1 × g 2 = γ 1 i + γ 2 j + γ 3 k
                                                                                           (1.36)
                        and
                              1                        1                        1
                         1                        2                        3
                        g = √ (α 1 i+α 2 j+α 3 k),  g = √ (β 1 i+β 2 j+β 3 k),  g = √ (γ 1 i+γ 2 j+γ 3 k).
                               g                        g                        g
                                                                                           (1.37)
                          Since M = L −1 , we also have, in the same notation, the matrix elements of M:
                                                 √             √            √
                                          ξ x = α 1 / g,  ξ y = α 2 / g,  ξ z = α 3 / g
                                                 √             √            √
                                         η x = β 1 / g,  η y = β 2 / g,  η z = β 3 / g     (1.38)
                                                 √            √             √
                                         ς x = γ 1 / g,  ς y = γ 2 / g,  ς z = γ 3 / g.
                        Exercise 3. Using eqn (1.29) and standard determinant expansions, derive the follow-
                        ing formulas for the determinant g:
                                     g = g 11 G 1 + g 12 G 4 + g 13 G 5 = (α 1 x ξ + β 1 x η + γ 1 x ς ) 2

                                       = g 22 G 2 + g 12 G 4 + g 23 G 6 = (α 2 y ξ + β 2 y η + γ 2 y ς ) 2  (1.39)
                                                                                  2
                                       = g 33 G 3 + g 13 G 5 + g 23 G 6 = (α 3 z ξ + β 3 z η + γ 3 z ς ) .
                          From eqn (1.32) it follows that
                                                          1
                                             ip
                                                  i
                                                     p
                                            g  = g · g =   (g j × g k ) · (g q × g r ),
                                                          g
                        where {i, j, k} and {p, q, r} are in cyclic order {1, 2, 3}. Using the standard Lagrange
                        vector identity
                                      (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C),  (1.40)
                        we have
                                               1
                                          ip
                                         g  =   {(g j · g q )(g k · g r ) − (g j · g r )(g k · g q )}
                                               g
                                               1
                                            =   (g jq g kr − g jr g kq ).                  (1.41)
                                               g
                          For example,
                                                       1
                                                  13
                                                 g  =   (g 21 g 32 − g 22 g 31 ).
                                                       g
   13   14   15   16   17   18   19   20   21   22   23