Page 197 - Basic Structured Grid Generation
P. 197

186  Basic Structured Grid Generation

                          Now eqn (7.32) may be expressed in vector form as
                                            ∂v

                                        ρ        + ρ(v ·∇)v =∇ · σ =−∇p +∇ · T
                                            ∂t
                                               y i
                        and using eqn (7.7) gives


                                          ∂v
                                      ρ        − ρ(W ·∇)v + ρ(v·∇)v =−∇p +∇ · T.           (7.33)
                                          ∂t  x  i
                                               i
                          Dropping the subscript x for the moment, we have
                                             k
                                     ∂v   ∂(v g k )  ∂v k   k  ∂g k    ∂v k  j  k
                                        =        =     g k + v   =       + v   j0  g k .   (7.34)
                                     ∂t     ∂t      ∂t        ∂t      ∂t
                        The second and third terms of eqn (7.33) may be combined to give

                                                                ∂v      j     j  k
                                                             j
                                                        j
                                    ρ[(v − W) ·∇]v = ρ(v − W )     = ρ(v − W )v g k ,      (7.35)
                                                                                 ,j
                                                               ∂x j
                        where v k  is a covariant derivative. The right-hand side of eqn (7.33) may be written,
                               ,j
                        using eqns (1.12), (1.51), and (1.155), as
                                             ∂p         1  ∂  √
                                           ik                     kj    ij  k
                                         −g     g k + √      ( gT ) + T    ij  g k .       (7.36)
                                             ∂x i       g ∂x j
                          Putting eqns (7.34), (7.35), and (7.36) together into eqn (7.33), and observing that
                        the resulting contravariant coefficients of g k must be identical on both sides, gives
                               k
                             ∂v     j  k       j    j  k      ik  ∂p    1  ∂  √    kj    ij  k
                          ρ      + v   j0  + ρ(v − W )v =−g        + √       ( gT ) + T    ij  .
                                                       ,j
                              ∂t                                ∂x i    g ∂x j
                                                                                           (7.37)
                        Exercise 2. Making use of eqns (1.155) and (1.156), show that eqn (7.37) may be
                        expressed as

                                      k                        k
                                    ∂v     j  k       j    j  ∂v    1   ∂  √     kj   kj
                                 ρ      + v   j0  + ρ(v − W )    + √      [ g(pg   − T )]
                                    ∂t                       ∂x j    g ∂x j
                                                               k
                                                j
                                                            ij
                                           j
                                        i
                                                       ij
                                   +[ρv (v − W ) + pg − T ]  = 0.                          (7.38)
                                                               ij
                        In the last two equations there is summation over the i and j suffixes from 1 to 3, and
                        k can take any value from 1 to 3. We can also express T  ij  in generalized contravariant
                        form as

                                                               1 ij
                                                           ij
                                                 T  ij  = 2µ ε − g ∇· v                    (7.39)
                                                               3
                              ij
                                   ik jl
                                                ik jl

                        with ε = g g ε kl = 1/2g g   
 v k,l + v l,k .
                          Equations (7.38) are the momentum equations for a general time-dependent curvi-
                        linear co-ordinate system in non-conservative form.
   192   193   194   195   196   197   198   199   200   201   202