Page 199 - Basic Structured Grid Generation
P. 199

188  Basic Structured Grid Generation

                        Hence
                                                     √
                                                       g = l(y b − y a ).                  (7.42)
                        Moreover,

                                                           ∂y a   dy b
                             x ξ = l,  x η = 0,  y ξ = l (1 − η)  + η  ,  y η = (y b − y a ).  (7.43)
                                                           ∂x      dx
                        It follows from eqn (1.158) that


                                                                          2
                                                               ∂y a   dy b
                                           g 11 = l 2  1 + (1 − η)  + η      ,
                                                               ∂x     dx
                                                        2
                                                               2
                                           g 22 = (y b − y a ) = g/l ,                     (7.44)

                                                         ∂y a   dy b
                                           g 12 = l (1 − η)  + η     (y b − y a ).
                                                         ∂x     dx
                        where η is given in terms of x, y, and t by eqn (7.40).
                          Also, from (1.163),
                                        11     2
                                       g  = 1/l ,
                                                                    2

                                                         ∂y a   dy b
                                       g 22  = 1 + (1 − η)  + η        (y b − y a ) −2 ,   (7.45)
                                                         ∂x     dx
                                              1        ∂y a   dy b         −1
                                        12
                                       g  =−     (1 − η)   + η     (y b − y a )  .
                                              l         ∂x     dx
                        In evaluating Christoffel symbols through eqn (1.102) we have to obtain the second
                        partial derivatives

                                             x ξξ = x ξη = x ηη = 0,
                                                                     2
                                                             2
                                                            ∂ y a   d y b
                                             y ξξ = l 2  (1 − η)  + η     ,                (7.46)
                                                             ∂x 2    dx 2
                                                        dy b  ∂y a
                                             y ξη = l 2   −      ,  y ηη = 0.
                                                       dx    ∂x
                        Hence we get
                                          1  =   1  =   1  =   2  = 0,
                                          11   12    21    22
                                                                 2
                                                         2
                                                       ∂ y a    d y b
                                          2 11  = l 2  (1 − η)  + η  (y b − y a ) −1 ,     (7.47)
                                                        ∂x 2    dx 2

                                          2 12  =   2 21  = l 2  dy b  −  ∂y a  (y b − y a ) −1 .
                                                        dx    ∂x
                          Turning our attention now to the time variable, we can deduce from eqn (7.16) that

                                                                 2
                                                  k   ∂g i  k   ∂ y j ∂x k
                                                  =      · g =          ,                  (7.48)
                                                 i0                i
                                                      ∂t       ∂t∂x ∂y j
   194   195   196   197   198   199   200   201   202   203   204