Page 10 - Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics
P. 10

Contents                                                                                  1X

                          3.2      Numerical  Dispersion  and  Numerical  Diffusion                    264

                          3.3      Lax,  Lax—Wendroff  and  MacCormack  Methods                        266
                          Diffusion  Equation                                                          272
                          4.1      Forward-Time  Scheme                                                272

                          4.2       Centered-Time  Scheme                                              273
                          4.3      Backward-Time  Scheme                                               274
                          4.4      Increasing  the  Scheme’s  Accuracy                                 275
                          4.5      Numerical  Example                                                  275

                          Burgers  Equation  Without  Shock                                            277
                          5.1      Lax  Scheme                                                         277
                          5.2      Leap-Frog  Scheme                                                   278

                          5.3      Lax—Wendroff  Scheme                                                279
                          Hyperbolic  Equations                                                        280

                          6.1       Discretization  of  Hyperbolic  Equations                          280
                          6.2       Discretization  in  the  Presence  of  a  Shock                    285
                          6.3      Method  of  Characteristics                                         291

                          Elliptic  Equations                                                          295
                          7A       Iterative  Methods                                                  296
                          7.2      Direct  Method                                                      304

                          7.3      Transonic  Flows                                                    307
                          7A        Stokes’  Problem                                                   312
                          Compact  Finite  Differences                                                 320

                          8.1      The  Compact  Finite  Differences  Method  (CFDM)                   320
                          8.2      Approximation  of  the  Derivatives                                 321
                          8.3      Fourier  Analysis  of  the  Errors                                  326
                         8.4        Combined  Compact  Differences  Schemes                            329

                          8.5       Supercompact  Difference  Schemes                                  333
                          Coordinate  Transformation                                                   335

                          9.1       Coordinate  Stretching                                             338
                          9.2       Boundary-Fitted  Coordinate  Systems                               339
                          9.3       Adaptive  Grids                                                    344

                    FINITE  ELEMENT  AND  BOUNDARY  ELEMENT
                   METHODS                                                                             345

                    1     Finite  Element  Method  (FEM)                                               345
                          1.1      Flow  in  the  Presence  of  a  Permeable  Wall                     349
                          1.2       PDE-Toolbox  of  MATLAB                                            354

                          Least-Squares  Finite  Element  Method  (LSFEM)                              356
                          2.1       First  Order  Model  Problem                                       356
   5   6   7   8   9   10   11   12   13   14   15