Page 11 - Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics
P. 11

2.2      The  Mathematical  Foundation  of  the  Least-Squares
                                   Finite  Element  Method                                             363
                          2.3      Div-Curl  (Rot)  Systems                                            370
                          2.4      Div-Curl  (Rot)-Grad  System                                        375

                          2.5      Stokes’  Problem                                                    377
                   3      Boundary  Element  Method  (BEM)                                             380
                          3.1      Abstract  Formulation  of  the  Boundary  Element
                                   Method                                                              381

                          3.2      Variant  of  the  Complex  Variables  Boundary
                                   Element  Method  [112]                                              385
                          3.3      The  Motion  of  a  Dirigible  Balloon                              389
                          3.4       Coupling  of  the  Boundary  Element  Method  and
                                   the  Finite  Element  Method                                        391

               7.   THE  FINITE  VOLUME  METHOD  AND
                   THE  GENERALIZED  DIFFERENCE  METHOD                                                397

                    1     ENO  Finite  Volume  Schemes                                                 398
                          1.1      ENO  Finite  Volume  Scheme  in  One  Dimension                     399

                          1.2      ENO  Finite  Volume  Scheme  in  Multi-Dimensions                   406
                   2      Generalized  Difference  Method                                              41]
                          2.1      Two-Point  Boundary  Value  Problems                                411

                          2.2       Second  Order  Elliptic  Problems                                  424
                          2.3       Parabolic  Equations                                               429
                          2.4       Application                                                        433


               8    SPECTRAL  METHODS                                                                  439
                    1     Fourier  Series                                                              442

                          1.1       The  Discretization                                                442
                          1.2       Approximation  of  the  Derivatives                                445
                   2      Orthogonal  Polynomials                                                      447

                          2.1       Discrete  Polynomial  Transforms                                   447
                          2.2       Legendre  Polynomials                                              450
                          2.3       Chebyshev  Polynomials                                             452

                   3      Spectral  Methods  for  PDE                                                  455
                          3.1       Fourier—Galerkin  Method                                           455
                          3.2       Fourier-Collocation                                                456

                          3.3       Chebyshev-Tau  Method                                              457
                          3.4       Chebyshev-Collocation  Method                                      458
                          3.5       The  Calculation  of  the  Convolution  Sums                       459

                          3.6       Complete  Discretization                                           460
   6   7   8   9   10   11   12   13   14   15   16