Page 354 - Becoming Metric Wise
P. 354

348   Bibliography


             performance study of the departments of the Catholic University of Leuven).
             Tijdschrift voor Economie en Management, 41(2), 165 193.
          Dennis, W. (1956). Age and productivity among scientists. Science, 123(3200), 724 725.
          Dewett, T., & Denisi, A. S. (2004). Exploring scholarly reputation: It’s more than just
             productivity. Scientometrics, 60(2), 249 272.
          Dietz, E. J. (1989). Teaching regression in a nonparametric statistics course. The American
             Statistician, 43(1), 35 40.
          Ding, Y., & Cronin, B. (2011). Popular and/or prestigious? Measures of scholarly esteem.
             Information Processing and Management, 47(1), 80 96.
          Ding, Y., Rousseau, R., & Wolfram, D. (Eds.). (2014). Measuring scholarly impact. Cham:
             Springer.
          DORA (2012). San Francisco declaration on research assessment. DORA   ASCB.
             Available from: ,http://www.ascb.org/dora/..
          Doyle, J. R., & Arthurs, A. J. (1995). Judging the quality of research in business schools:
             The UK as a case study. Omega, The International Journal of Management Science, 23(3),
             257 270.
          Doyle, J. R., Arthurs, A. J., McAulay, L., & Osborne, P. G. (1996). Citation as effortful
             voting: A reply to Jones, Brinn and Pendlebury. Omega, The International Journal of
             Management Science, 24(5), 603 606.
          Dresden, A. (1922). A report on the scientific work of the Chicago section, 1897-1922.
             Bulletin of the American Mathematical Society, 28(6), 303 307.
          Drijvers, P., & Gravemeijer, K. (2004). Computer algebra as an instrument: Examples of
             algebraic schemes. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical chal-
             lenge of symbolic calculators: Turning a computational device into a mathematical instrument
             (pp. 171 206). Dordrecht: Kluwer.
          D’Souza, J. L., & Smalheiser, N. R. (2014). Three journal similarity metrics and their
             application to biomedical journals. PLOS ONE, 9(12), e115681.
          Du, J., & Wu, YS. (2016). A bibliometric framework for identifying the Princes who wake
             up the Sleeping Beauty in challenge-type scientific discoveries. Journal of Data and
             Information Science, 1(1), 50 68.
          Duesenberry, J. S. (1949). Income, savings, and the theory of consumer behavior. Cambridge
             (MA): Harvard University Press.
          Edge, D. (1977). Why I am not a co-citationist. Society for Social Studies in Science:
             Newsletter, 2,13 19.
          Edge, D. (1979). Quantitative measures of communication in science: A critical review.
             History of Science, 17(2), 102 134.
          Edward, J. T. (1992). Be cited or perish. Chemtech, 22(9), 534 539.
          Egghe, L. (1985). Consequences of Lotka’s law for the law of Bradford. Journal of
             Documentation, 41(3), 173 189.
          Egghe, L. (1990). The duality of informetric systems with applications to the empirical
             laws. Journal of Information Science, 16(1), 17 27.
          Egghe, L. (1991). Theory of collaboration and collaborative measures. Information
             Processing and Management, 27(2 3), 177 202.
          Egghe, L. (1993a). On the influence of growth on obsolescence. Scientometrics, 27(2),
             195 214.
          Egghe, L. (1993b). Exact probabilistic and mathematical proofs of the relation between
             the mean and the generalized 80/20-rule. Journal of the American Society for Information
             Science, 44(7), 369 375.
          Egghe, L. (2000). A heuristic study of the first-citation distribution. Scientometrics, 48(3),
             345 359.
          Egghe, L. (2005). Power laws in the information production process: Lotkaian informetrics.
             Amsterdam: Elsevier.
   349   350   351   352   353   354   355   356   357   358   359