Page 117 - Biaxial Multiaxial Fatigue and Fracture
P. 117

102                       L. SUSMEL AND A!  PETRONE

            fatigue lives; the second one is the capacity of predicting correct fatigue lives despite the evident
            degree  of  material  anisotropy  due  to  manufacturing  process  as  commonly  showed  by  real
            industrial components.


            REFERENCES
            1.  You, B. R. , Lee, S. B.  (1996) A critical review on multiaxial fatigue assessments of  metals.
               Int. J. Fatigue 18 4,235-244.
            2.  Socie, D. F. , Marquis, G. B. (2000) Multiaxial Fatigue, SAE.
            3.  Brown,  M.  W.,  Miller,  K.  J.  (1973).  A  theory  for  fatigue  under  multiaxial  stress-strain
               conditions. In: Proc. Inst. Mech. Engrs, Vol.  187,745-755.
            4.  Wang,  C.  H.,  Brown,  M.  W.  (1993).  A  path-independent  parameter  for  fatigue  under
               proportional and non-proportional loading. Fatigue Fract. Engng. Mater. Struct. 16 12, 1285-
               1298.
            5.  Socie, D. F.  (1987). Multiaxial Fatigue Damage Models. Trans. ASME, J. Eng. Mat. Techn.
               189 4,293-298.
            6.  Fatemi, A.  , Socie, D.  F.  (1988). A  critical  plane  approach  to  multiaxial  fatigue damage
                including out-of-phase loading. Fatigue Fract. Engng. Mater. Struct. 11 3,149-166.
            7.  Garud, Y. S. (1981). A new approach to the evaluation of fatigue under multiaxial loadings.
                Trans. ASME, J. Eng. Mat. Techn. 103,119-125.
            8.  Ellyin, F. (1989). Cyclic Strain Energy Density as a Criterion for Multiaxial Fatigue Failure.
                In: Biaxial  and Multiaxial  Fatigue,  EGF  3, Mechanical Engineering Publications, London,
                571 -583.
            9.  Ellyin, F.,  Golos K.,  Xia  Z.  (1991). In-Phase and  Out-of-Phase Multiaxial Fatigue  Trans.
               ASME, J. Eng. Mat. Techn. 113,112-118.
            10. Lazzarin, P., Zambardi, R. (2001). A finite-volume-energy based approach to predict the static
                and fatigue behaviour of components with V-shaped notches. Int. J. Fracture 112,275-298.
            11.  Gough, H. J. (1949). Engineering Steels under Combined Cyclic and Static stresses. In: Proc.
                Inst. Mech. Engrs. 160,417-440.
            12. Findley, W.  N. (1959). A  theory for the effect of  mean  stress on  fatigue under  combined
                torsion and axial load or bending. Trans ASME Ser. B 81,301-306.
            13.  Matake, T. (1977). An  explanation on fatigue limit under combined stress. Bulletin of JSME
                20, 257-263.
             14.  McDiarmid,  D.  L.  (1991). A  general  criterion  for  high-cycle  multiaxial  fatigue  failure.
                Fatigue Fract. Engng. Mater. Struct. 14,429-453.
             15.  Dang Van, K. (1993). Macro-Micro Approach in High-Cycle Multiaxial Fatigue. ASTM STP
                1191, American Society for Testing Materials Philadelphia, 120-130.
             16.  Papadopoulos, I. V. (1987). Fatigue polycyclique des mCtaux: une novelle approche. Th2se de
                Doctorat, &le  Nationale des Ponts et Chausstes, Paris, France.
             17.  Papadopoulos, I. V. , Davoli P.,  Gorla C.,  Filippini M.,  Bernasconi A. (1997). A comparative
                study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19 3,219-235.
             18.  Papadopoulos, I.  V.  (2001). Long life fatigue under multiaxial loading. Znt. J. Fatigue 23 10,
                839-849.
             19.  Carpinteri, A.,  Brighenti, R.,  Spagnoli, A.  (2000). A  fracture plane approach in  multiaxial
                high-cycle fatigue of metals. Fatigue Fract. Engng. Mater. Struct. 23,355-364.
   112   113   114   115   116   117   118   119   120   121   122