Page 117 - Biaxial Multiaxial Fatigue and Fracture
P. 117
102 L. SUSMEL AND A! PETRONE
fatigue lives; the second one is the capacity of predicting correct fatigue lives despite the evident
degree of material anisotropy due to manufacturing process as commonly showed by real
industrial components.
REFERENCES
1. You, B. R. , Lee, S. B. (1996) A critical review on multiaxial fatigue assessments of metals.
Int. J. Fatigue 18 4,235-244.
2. Socie, D. F. , Marquis, G. B. (2000) Multiaxial Fatigue, SAE.
3. Brown, M. W., Miller, K. J. (1973). A theory for fatigue under multiaxial stress-strain
conditions. In: Proc. Inst. Mech. Engrs, Vol. 187,745-755.
4. Wang, C. H., Brown, M. W. (1993). A path-independent parameter for fatigue under
proportional and non-proportional loading. Fatigue Fract. Engng. Mater. Struct. 16 12, 1285-
1298.
5. Socie, D. F. (1987). Multiaxial Fatigue Damage Models. Trans. ASME, J. Eng. Mat. Techn.
189 4,293-298.
6. Fatemi, A. , Socie, D. F. (1988). A critical plane approach to multiaxial fatigue damage
including out-of-phase loading. Fatigue Fract. Engng. Mater. Struct. 11 3,149-166.
7. Garud, Y. S. (1981). A new approach to the evaluation of fatigue under multiaxial loadings.
Trans. ASME, J. Eng. Mat. Techn. 103,119-125.
8. Ellyin, F. (1989). Cyclic Strain Energy Density as a Criterion for Multiaxial Fatigue Failure.
In: Biaxial and Multiaxial Fatigue, EGF 3, Mechanical Engineering Publications, London,
571 -583.
9. Ellyin, F., Golos K., Xia Z. (1991). In-Phase and Out-of-Phase Multiaxial Fatigue Trans.
ASME, J. Eng. Mat. Techn. 113,112-118.
10. Lazzarin, P., Zambardi, R. (2001). A finite-volume-energy based approach to predict the static
and fatigue behaviour of components with V-shaped notches. Int. J. Fracture 112,275-298.
11. Gough, H. J. (1949). Engineering Steels under Combined Cyclic and Static stresses. In: Proc.
Inst. Mech. Engrs. 160,417-440.
12. Findley, W. N. (1959). A theory for the effect of mean stress on fatigue under combined
torsion and axial load or bending. Trans ASME Ser. B 81,301-306.
13. Matake, T. (1977). An explanation on fatigue limit under combined stress. Bulletin of JSME
20, 257-263.
14. McDiarmid, D. L. (1991). A general criterion for high-cycle multiaxial fatigue failure.
Fatigue Fract. Engng. Mater. Struct. 14,429-453.
15. Dang Van, K. (1993). Macro-Micro Approach in High-Cycle Multiaxial Fatigue. ASTM STP
1191, American Society for Testing Materials Philadelphia, 120-130.
16. Papadopoulos, I. V. (1987). Fatigue polycyclique des mCtaux: une novelle approche. Th2se de
Doctorat, &le Nationale des Ponts et Chausstes, Paris, France.
17. Papadopoulos, I. V. , Davoli P., Gorla C., Filippini M., Bernasconi A. (1997). A comparative
study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19 3,219-235.
18. Papadopoulos, I. V. (2001). Long life fatigue under multiaxial loading. Znt. J. Fatigue 23 10,
839-849.
19. Carpinteri, A., Brighenti, R., Spagnoli, A. (2000). A fracture plane approach in multiaxial
high-cycle fatigue of metals. Fatigue Fract. Engng. Mater. Struct. 23,355-364.