Page 135 - Biaxial Multiaxial Fatigue and Fracture
P. 135
120 G.B. MARQUIS AND I! KARJALAINEN-ROIKONEN
4. Findley, W. N. (1953) Combined Fatigue Strength of 76S-T61 Aluminum Alloy with
Superimposed Mean Stresses and Correction for Yielding, Tech. Note 2924, NACA
Washington DC.
Gough, H. J. and Pollard, H. V. (1935) The strength of metals under combined
alternating stresses, Proc. Inst. Mech. Engrs., 131, pp. 3-103.
Sines, G. (1959) Behavior of metals under complex static and alternating stresses, In:
Metal Fatigue, G. Sines and J.L. Waisman (Eds.) McGraw Hill, pp. 145-169.
Sines, G. (1955) Failure of materials under combined repeated stresses with
superimposed static stresses, Tech. Note 3495, NACA, Washington DC.
McDiarmid, D. L. (1994) A shear stress based critical-plane criterion of multiaxial
fatigue failure for design and life prediction”, Fatigue Fract. Engng. Mat. Struct. 17, pp.
1475- 1485.
9. Dang-Van, K. (1993) Macro-micro approach in high-cycle multiaxial fatigue, In:
Advances in Multiaxial Fatigue, ASTM STP 1191, D.L. McDowell and R. Ellis (Eds.)
ASTM, Philadelphia, pp. 120-130.
10. Socie, D. F. (1987) Multiaxial fatigue damage models, J Eng. Mat. Tech. (ASME), 109,
pp. 293-298.
11. Carpinteri, A. and Spagnoli, A. (2001) Multiaxial high-cycle fatigue criterion for hard
metals, Int. J. Fatigue, 23, pp. 135-145.
12. Marquis, G. and Socie, D. (2000) Long-life torsion fatigue with normal mean stresses
Fatigue Fract. Engng. Mater. Struct. 23, pp. 293-300.
13. Marquis, G. (2000) Mean stress in long-life torsion fatigue, In: ECF 13 Fracture
mechanics: applications and challenges, M. Fuentes, M. Elices, A. Martin-Meizoso and
J. M. Martinez-Esnaola (Eds.), Elsevier Science, Amsterdam.
14. Marquis, G., Rabb, R. and Siivonen, L. (1999) Endurance Limit Design of Spheroidal
Graphite Cast Iron Components Based on Natural Defects, In: Fatigue Crack Growth
Thresholds, Endurance Limits, and Design, ASTM STP 1372, J. C. Newman and R.
Piascik (Eds.) ASTM, West Conshohocken, pp. 41 1-426.
15. Marquis, G., and Solin J. (2001) Long-Life Fatigue Design of GRP 500 Nodular Cast
Iron Components, VTT research notes 2043, Espoo, Finland.
16. Smith, R. N., Watson, P. and Topper, T. H. (1970) A stress-strain parameter for the
fatigue of metals, J. Mater., 5, pp. 767-778.
17. Socie, D. F. (1993) Critical plane approaches for multiaxial fatigue damage assessment,
In: Advances in Multiaxial Fatigue, ASTM STP 1191, eds. D. L. McDowell and R. Ellis,
ASTM, Philadelphia, pp. 7-36.
18. Liu, K. C. (1993) A method based on virtual strain-energy parameters for multiaxial
fatigue life prediction, In: Advances in Multiaxial Fatigue, ASTM STP 1191, eds. D. L.
McDowell and R. Ellis, ASTM, Philadelphia, 1993, pp. 67-84.
19. Murakami, Y. and Endo, M. (1994) Effects of defects, inclusions and inhomogeneities
on fatigue strength, Int. J. Fatigue, 16, pp. 163-182.
20. Murakami, Y. and Endo, T. (1980) Effects of small defects on the fatigue strength of
metals, Int. J. Fatigue, 2, pp. 23-30.
21. Abe, M. Ito, H. and Murakami, Y. (1990) Tension-compression and torsion low-cycle
fatigue of maraging steel, In: Fatigue 90, H. Kitagawa and T. Tanaka (Eds.), MCE
Publications, Birmingham, pp. 1661-1666.