Page 157 - Biaxial Multiaxial Fatigue and Fracture
P. 157

142                    R.P KAUFMAN AND ZH. TOPPER

              9.  Guest, J.J.,  (1940) “On the strength of ductile materials under combined stresses,” Proc. Inst
                of  Automobile Engrs. 3533.
              10. Gough, H.J.,  and  Pollard, H.V.,  (1935) ‘The effect of  specimen form on  the resistance of
                metals to combined alternating stresses,” Proc. Insr Mech Engrs. 131,3.
              1 1. Stanfield, G.,( 1935) Discussion of the strength of metals under combined alternating stresses,
                by Gough, H. and Pollard, H., Proc. Inst Mech Engrs. 131 93.
              12. McDiamid, D.L.,  (1974) “Mean stress effects in biaxial fatigue where the stresses are out-
                of-phase and at different frequencies,” Aero J. 78 325.
              13. Carpinteri, A.,  and  Spagnoli, A.  (2001) “Multiaxial high-cycle fatigue criterion for  hard
                metals.” Int J Fatigue 23, 135-145.
              14. Kandil, F.A., Brown, M.W.,  and Miller, K.J.,  (1982) “Biaxial low-cycle fatigue fracture of
                316 stainless steel at elevated temperatures,” The Metals Society 280 203.
              15. Fatemi, A.,  and  Socie, D.  (1988) “A critical plane approach to  multiaxial fatigue damage
                including out-of-phase loading, “J Far and Fract Eng Mat and Struct.3 149.
              16. Socie,  D.F.,  Kurath,  P.  and  Koch,  J.,  “A  multiaxial  LCF  parameter,”  (1985)  Second
                International Symposium on Multiaxial Fatigue.
              17. Fatemi, A., and Kurath, P., (1988) “Multiaxial fatigue life predictions under the influence of
                mean-stress,” J Eng Mat and Tech 110 380.
              18. Sines,  G,. PhD  Thesis,  “Failure  of  materials  under  combined  repeated  stresses  with
                superimposed static stresses,” University of California, USA.
              19. Sines, G., and Ohgi, G.,  (1981) “Fatigue criteria under combined stresses and strains,” Trans
                ASME, 103 82.
              20. Seeger, G., (1 936) Zeitschift d. V.I., 80 698.
              21. Smith, M.C.,  and Smith, R.C.,  (1988) ‘Towards an understanding of Mode 11 fatigue crack
                growth,” ASTM STP 924 260.
              22. Burns, D.J.,  and Parry, J.S.C.,  (1964) “Effect of  large hydrostatic pressures on the torsional
                fatigue strength of two steels,” JMech Eng Sci, 6 293.
              23. Socie, D.F.,  and Waill, L.A.,  Dittmer, D.F.,  (1985) “Biaxial fatigue of  inconel 718 including
                mean stress effects,”  ASTM STP 853.
              24. Socie, D.F., and Shield, T.W., (1984) “Mean stress effects in biaxial fatigue of inconel 71 8,”
                J Eng Mat Tech 106 227.
              25. Bonnen,  J.,  (1998) PhD  Thesis,  “Multiaxial  fatigue  response  of  normalized  1045 steel
                 subjected to periodic overloads: experiments and analysis,” University of Waterloo, Canada.
              26. Varavani-Farahni, A.,  (1998) PhD Thesis, “Biaxial fatigue crack growth and crack closure
                under  constant  amplitude  and  periodic  compressive  overload  histories  in  1045  steel,”
                University of Waterloo, Canada.
              27. Kaufman, R.,  (2002) PhD Thesis, “Static mean stress effects in multiaxial fatigue and their
                 implications  on  fatigue  life  predictions  of  induction  hardened  shafts,”  University  of
                 Waterloo, Canada.
              28. Havard,  D.G.,  (1970)  PhD  Thesis,  “Fatigue and  deformation  of  normalized  mild  steel
                 subjected to cyclic loading,” University of Waterloo, Canada.
              29. Elkholy, A.H.,  (1 975) Masters Thesis, University of Waterloo, Canada.
              30. Snoddy, J., (2001) Work Term Report, “Design, test and use of a confocal laser microscope,”
                 University of Waterloo, Canada.
   152   153   154   155   156   157   158   159   160   161   162