Page 279 - Biaxial Multiaxial Fatigue and Fracture
P. 279
The Multiaxial Fatigue Strength of Specimens Containing Small Defets 263
20. Dang Van, K. (1992). On Structural Integrity Assessment for Multiaxial Loading Paths, In:
Theoretical Concepts and Numerica1,Analysis of Fatigue; Biom, A. F. and Beevers, C. J.
(as), pp. 343-357, EMAS Publ., London.
21. Beretta, S. and Murakami, Y. (1998). The Stress Intensity Factor for Small Cracks at
Micro-Notches under Torsion, In: Fracture from Defects, Proc. ECFIZ I, pp. 55-60,
Brown, M. W., de 10s Rios, E. R. and Miller, K. J. (Eds), EMAS Publ., West Midlands, UK.
22. Beretta, S. and Murakami, Y. (2000). SIF and Threshold for Small Cracks at Small Notches
under Torsion, Fatigue Fract. Engng. Mater. Struct. 23,97-104.
23. Endo, M. (1999). Effects of Small Defects on the Fatigue Strength of Steel and Ductile Iron
under Combined AxialtTorsional Loading, In: Small Fatigue Cracks: Mechanics,
Mechanisms and Applications, pp. 375-387, Ravichandran, K. S., Ritchie, R. 0. and
Murakami, Y. (Eds), Elsevier, Oxford.
24. Endo, M. (2000). Fatigue Strength Prediction of Ductile Irons Subjected to Combined
Loading, In: Fracture Mechanics: Applications and Challenges, Proc. ECFI 3, on CD-
ROM, Elsevier, Oxford.
25. McEvily, A. J., Endo, M. and Murakami, Y. (2002). On the 6 Relationship and the
Short Fatigue Crack Threshold, to be published.
26. Murakami, Y., Kodama, S. and Konuma, S. (1989). Quantitative Evaluation of Effects of
Non-metallic Inclusions on Fatigue Strength of High Strength Steels. I: Basic Fatigue
Mechanism and Evaluation of Correlation between the Fatigue Fracture Stress and the Size
and Location of Non-metallic Inclusions, Int. J. Fatigue 11,291-298.
27. Murakami, Y. and Usuki, H. (1989). Quantitative Evaluation of Effects of Non-Metallic
Inclusions on Fatigue Strength of High Strength Steels. 11: Fatigue Limit Evaluation Based
on Statistics for Extreme Values of Inclusion Size, Int. J. Fatigue 11,299-307.
28. Murakami, Y., Uemura, Y., Natsume, Y. and Miyakawa, S. (1990). Effect of Mean Stress
on the Fatigue Strength of High-Strength Steels Containing Small Defects or Nonmetallic
Inclusions, Trans. Japan SOC. Mech. Engrs. 56, 1074.
29. Gough, H. J. and Pollard, H. V. (1937). Properties of Some Materials for Cast Crankshafts,
with Special Reference to Combined Stresses, Proc. Instn. Automobile Engs. 31,821-893.
30. Gough, H. J. (1949). Engineering Steels under Combined Cyclic and Static Stresses, Proc.
Instn. Mech. Engrs. 160,417-440.
31. Endo, M. (1991). Fatigue Strength Prediction of Nodular Cast Irons Containing Small
Defects, In: Impact of Improved Material Quality on Properties, Product Performance, and
Design, MD-Vol. 28, pp. 125-137, Muralidharam, U. (Ed), Am. SOC. Mech. Engrs., New
York.
32. Gumbel, E. J. (1957). Statistics of Extremes. Columbia Univ. Press, New York.
33. Gough, H. J. and Pollard, H. V. (1935). The Strength of Metals under Combined
Alternating Stresses, Pruc. Instn. Mech. Engrs. 131,3-103.
34. Heywood, R. B. (1962). Designing against Fatigue. Chapman and Hall Ltd., London.
35. Forrest, P. G. (1966). Fatigue ofMetals. Pergamon Press, Oxford.
36. Endo, M. (2002) Effects of Small Natural and Artificial Defects on Multiaxial Fatigue
Strength of Nodular Cast Iron, Pruc. Eighth Int. Fatigue Congress (Fufigue 2002),
Stockholm. pp, 2791-2798, Blom, A. F. (Ed), EMAS Publ., West Midlands, UK.