Page 278 - Biaxial Multiaxial Fatigue and Fracture
P. 278

262                              M. END0

            3.  Murakami, Y. and Endo, T. (1980).  Effects of Small Defects on Fatigue Strength of Metals,
               Int. J. Fatigue 2,23-30.
            4.  Murakami, Y. and Endo, M.  (1983).  Quantitative Evaluation of Fatigue Strength of Metals
               Containing Various Small Defects or Cracks, Engng. Fract. Mech. 17, 1-15.
            5.  Murakami, Y. and Endo, M. (1986).  Effects of Hardness and Crack Geometries on dKth of
               Small Cracks Emanating from Small Defects, In: The Behaviour ofshort Fatigue Crack,
               Miller, K. J. and de 10s %os, E. R. (Eds), pp. 275-293, Mech. Engng. Publ., London.
            6.  Murakami, Y. and Endo, M. (1992).  The I/area Parameter Model for Small Defects and
               Nonmetallic Inclusions in Fatigue Strength: Experimental Evidences and Applications, In:
               Theoretical Concepts and Numerical Anahsis of Fatigue; Blom, A. F. and Beevers, C. J.
               (Eds), pp. 5 1-71, EMAS Publ.,  London.
            7.  Murakami, Y. (2002). Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions.
               Elsevier, Oxford.
            8.  Miller, K. J. and Brown, M. W. (Eds) (1985). Multiaxial Fatigue. ASTM STP 853. Am.
               SOC. Test. Mater.,  Philadelphia.
            9.  Brown, M. W. and Miller, K. J. (Eds) (1989). Biaxial and Multiaxial Fatigue. Mech. Engng.
               Publ., London.
            10.  Kussmaul, K. F. and McDiarmid, D. L. (Eds) (1991). Fatigue under Biaxial and Multiaxial
               Loading. Mech. Engng. Publ., London.
            1 1.  Pineau, A.,  Cailletand, G. and Lindley, T. C. (Eds) (1 996). Multiaxial Fatigue and Design.
               Mech. Engng. Publ., London.
            12.  Miller, K. J. and McDowell, D. L. (Eds) (1999). Mixed-Mode Crack Behavior. ASTM STP
               1359, Am. SOC. Test. Mater.,  Philadelphia.
            13.  Socie, D. F. and Marquis, G. B. (2000). Multiaxial Fatigue. SOC. Automotive Engrs. Inc.
               Warrendale, PA.
            14.  Nisitani, H. and Kawano, K. (1971).  Correlation between the Fatigue Limit of a Material
               with Defects and its Non-Propagating Crack - Some Considerations Based on the Bending
               or Torsional Fatigue of the Specimen with a Diametrical Hole, Trans. Japan. Soc. Mech.
               Engrs. 37, 1492-1496.
            15.  Mitchell, M. R. (1977). Review of the Mechanical Properties of Cast Steels with Emphasis
               on Fatigue Behavior and the Influence of Microdiscontinuities, Trans. ASME, J. Engrzg.
               Mater. Tech. 99,329-343.
            16.  Endo, M. and Murakami, Y. (1 987). Effects of an Artificial Small Defect on Torsional
               Fatigue Strength of Steels, Trans. ASME, J. Engng. Mater. Tech. 109, 124-129.
            17.  Endo, M. (1998).  Fatigue Strength of Annealed 0.37 % Carbon Steel Containing Small
               Defect under Combined Axial and Torsional Loading, In: Fracture from Defects, Proc.
               ECFI2 VoI. I, pp.  1 15-120, Brown, M. W., de 10s  Rios, E. R. and Miller, K. J. (Eds),
               EMAS Publ.,  West Midlands, UK.
            18.  Murakami, Y. and Takahashi, K. (I 998). Torsional Fatigue of a Medium Carbon Steel
               Containing an Initial Small Surface Crack Introduced by Tension-Compression Fatigue:
               Crack Branching, Non-propagation and Fatigue Limit, Fatigue Fract. Engng. Mater. Struct.
               21, 1473-1484.
            19.  Nadot, Y., Bertheau, D., Denier, V. and Mendez, J. (2000) Integrity of Cast Components
               Containing Inhomogeneities, In: Fracture Mechanics: Applications and Challenges, Proc.
               ECF13, on CD-ROM, Elsevier, Oxford.
   273   274   275   276   277   278   279   280   281   282   283