Page 497 - Biaxial Multiaxial Fatigue and Fracture
P. 497

Fatigue Assessment of Mechanical Components Under Complex Multiaxial Loading   48 1

           17. Ballard,  P.,  Dang  Van,  K.,  Deperrois A.  and  Papadopoulos, Y.V.  (1995)  High  Cycle
             Fatigue and a Finite Element Analysis, Fatigue and Fracture of Engineering Materials and
             Structures, Vol. 18, No. 3, pp.397-41 I.
          18. Papadopoulos, I.V.,  Davoli,  P.,  Gorla, C.,  Filippini, M.  and  Bernasconi,  A.  (1997) “A
             Comparative Study of Multiaxial High-cycle Fatigue Criteria for Metals,” h?. J. Fatigue,
             19(3), pp. 219-235.
          19. ANSYS  Manual, Revision 5.3,  Swanson Analysis Systems, Inc.,  P.O.  Box  65, Johnson
             Road, Houston, PA 15342-0065,1996.



          Appendix: NOMENCLATURE
                               length of the longest chord
                               the fatigue damage indicator
                               dynamic force in x direction
                               dynamic force in y direction
                               bending fatigue strength at the cyclic life N
                               second deviatoric stress invariant
                               ratio of shear stress amplitude over normal stress amplitude
                               Minimum Circumscribed Circle
                               Minimum Circumscribed Ellipse
                               cyclic life
                               factor of non-proportionality of the multiaxial fatigue loading
                               radius of the minimum circumscribed circle
                               length of the major semi-axis of the minimum circumscribed ellipse
                               length of the minor semi-axis of the minimum circumscribed ellipse
                               transformed deviatoric stress vector
                               components of the transformed deviatoric stress vector S
                               equivalent stress amplitbde parameter
                               time instant
                               torsion fatigue strength at the cyclic life N
                               center point of the MCC and MCE
                               coordinates of the center point w
                               phase shift angle
                               stress tensor
                               deviatoric stress tensor
                               shear stress amplitude
                               normal stress
                               material parameter for a given cyclic life N
                               material parameter for a given cyclic life N
                               amplitude of shear stress component under torsion
                               amplitude of normal stress component under bending
                               components of the stress tensor 0-
   492   493   494   495   496   497   498   499   500   501   502