Page 95 - Biaxial Multiaxial Fatigue and Fracture
P. 95
80 N. ISOBE AND S. SAKURAI
REFERENCES
1.ASME (1995): Boiler and Pressure Vessel Code, Section III, Division 1 - Subsection NH.
2.Jaske, C. E. (2000): Fatigue-Strength-Reduction Factors for Welds in Pressure Vessels and
Piping : Transactions of ASME, Journal Pressure Vessel Technology, 122,297-304.
3.Sakurai, S., Usami, S. and Miyata, H. (1987): Microcrack Initiation and Growth Behavior
Under Creep-Fatigue in a Plain Specimen of Degraded CrMoV Cast Steel : JSME
International Journal, 30, 1732- 1740.
4.Sakane, M., Ohnami, M. and Sawada, M. (1987): Fracture Modes and Low Cycle Biaxial
Fatigue at Elevated Temperature: Transactions of ASME, Journal of Pressure Vessel
Technology, 109,236-243.
S.Sakurai, S. and Umezawa, S. (1991): Fatigue Crack Growth Threshold for Distributed-Small-
Cracks in Hastelloy-X at High Temperature: Journal of the Society of Material Science Japan,
40, 1035-1041 (in Japanese).
6.Usami, S., Fukuda, Y. and Shida, S. (1986): Micro-Crack Initiation, Propagation and
Threshold in Elevated Temperature Inelastic Fatigue: Transactions of ASME, Journal of
Pressure Vessel Technology, 108,214-225
7.Fukuda, Y. and Sato, Y. (1995): Micro-Crack Propagation and Fatigue Life of Large Welded
Structures: Journal of the Society of Material Science Japan, 44,65-70 (in Japanese).
8.ASTM (1996): Standard Test Method for Measurement of Fatigue Crack Growth Rates:
ASTM E647,587.
9.Isobe, N. and Sakurai, S. (2000): Micro-Crack Growth Modes and Their Propagation Rate
under Multiaxial Low-Cycle Fatigue at High Temperature: Multiaxial Fatigue and
Deformation: Testing and Prediction, ASTM STP, 1387,340-352.
lO.Itoh, T., Sakane, M. and Ohnami, M. (1994): High Temperature Multiaxial Low Cycle
Fatigue of Cruciform Specimen : Transactions of ASME, Journal of Engineering Material
and Technology, 116,90-95.
1 l.Dowling, N.E. (1976): Geometry Effects and the J-Integral Approach to Elastic-Plastic
Fatigue Crack GRowth: Cracks and Fracture, ASTM STP, 601,19-32
Appendix : NOMENCLATURE
$ Principal strain ratio ($=E~ /el )
E.s von Mises equivalent strain
0, von Mises equivalent stress
El Maximum principal strain
E3 Minimum principal strain
C Half crack length
AJf Cyclic J-integral range