Page 95 - Biaxial Multiaxial Fatigue and Fracture
P. 95

80                         N. ISOBE AND S. SAKURAI

             REFERENCES
             1.ASME (1995): Boiler and Pressure Vessel Code, Section III, Division 1 - Subsection NH.
             2.Jaske,  C. E.  (2000): Fatigue-Strength-Reduction Factors for Welds in Pressure Vessels and
              Piping : Transactions of ASME, Journal Pressure Vessel Technology, 122,297-304.
             3.Sakurai, S.,  Usami, S. and Miyata, H.  (1987): Microcrack Initiation and Growth Behavior
              Under  Creep-Fatigue  in  a  Plain  Specimen  of  Degraded  CrMoV  Cast  Steel  : JSME
              International Journal, 30, 1732- 1740.
             4.Sakane, M.,  Ohnami, M.  and Sawada, M.  (1987):  Fracture Modes and Low Cycle Biaxial
              Fatigue  at  Elevated  Temperature:  Transactions  of  ASME,  Journal  of  Pressure  Vessel
              Technology, 109,236-243.
             S.Sakurai, S. and Umezawa, S. (1991): Fatigue Crack Growth Threshold for Distributed-Small-
              Cracks in Hastelloy-X at High Temperature: Journal of the Society of Material Science Japan,
               40, 1035-1041 (in Japanese).
             6.Usami,  S.,  Fukuda,  Y.  and  Shida,  S.  (1986):  Micro-Crack Initiation,  Propagation  and
              Threshold in  Elevated Temperature Inelastic Fatigue:  Transactions of  ASME,  Journal  of
              Pressure Vessel Technology, 108,214-225
             7.Fukuda, Y. and Sato, Y. (1995): Micro-Crack Propagation and Fatigue Life of Large Welded
               Structures: Journal of the Society of Material Science Japan, 44,65-70 (in Japanese).
             8.ASTM  (1996): Standard Test  Method  for Measurement of  Fatigue  Crack Growth Rates:
               ASTM E647,587.
             9.Isobe,  N.  and Sakurai, S. (2000): Micro-Crack Growth Modes and Their Propagation Rate
               under  Multiaxial  Low-Cycle  Fatigue  at  High  Temperature:  Multiaxial  Fatigue  and
               Deformation: Testing and Prediction, ASTM STP, 1387,340-352.
             lO.Itoh,  T.,  Sakane, M.  and Ohnami, M.  (1994): High Temperature Multiaxial Low  Cycle
               Fatigue of  Cruciform Specimen : Transactions of  ASME,  Journal of  Engineering Material
               and Technology, 116,90-95.
             1 l.Dowling,  N.E.  (1976): Geometry Effects and  the J-Integral Approach to  Elastic-Plastic
               Fatigue Crack GRowth: Cracks and Fracture, ASTM STP, 601,19-32


             Appendix : NOMENCLATURE

                      $         Principal strain ratio  ($=E~ /el )
                     E.s        von  Mises equivalent strain
                     0,         von  Mises equivalent stress

                     El         Maximum principal strain
                     E3         Minimum principal strain
                      C         Half crack length
                     AJf        Cyclic J-integral range
   90   91   92   93   94   95   96   97   98   99   100