Page 156 - Big Data Analytics for Intelligent Healthcare Management
P. 156
FURTHER READING 149
FURTHER READING
E.B. Blanchard, F. Andrasik, D.F. Neff, S.E. Jurish, D.M. O’Keefe, Social validation of the headache diary,
Behav. Ther. 12 (1981) 711–715.
E.B. Blanchard, F. Andrasik, T.A. Ahles, S.J. Teders, D. O’Keefe, Migraine and tension headache: a meta-analytic
review, Behav. Ther. 11 (1980) 613–631.
F. Boureau, M. Luu, J.F. Doubrere, Study of experimental pain measures and nociceptive reflex in chronic pain
patients and normal subjects, Pain 44 (1991) 131–138.
T. Budzynski, J. Stoyva, C. Adler, D. Mullaney, EMG BF and tension headache: a controlled outcome study,
Psychosom. Med. 35 (1973) 484–496.
J.R. Cram, EMG BF and the treatment of tension headaches: a systematic analysis of treatment components,
Behav. Ther. 11 (1980) 699–710.
H. Das, A.K. Jena, J. Nayak, B. Naik, H.S. Behera, A novel PSO based back propagation learning-MLP (PSO-BP-
MLP) for classification, in: Computational Intelligence in Data Mining, vol. 2, Springer, New Delhi, 2015,
pp. 461–471.
H. Das, B. Naik, H.S. Behera, Classification of diabetes mellitus disease (DMD): a data mining (DM) approach,
in: Progress in Computing, Analytics and Networking, Springer, Singapore, 2018, pp. 539–549.
N. Dey, A.E. Hassanien, C. Bhatt, A.S. Ashour, S.C. Satapathy (Eds.), Internet of Things and Big Data Analytics
Toward Next-Generation Intelligence, Springer International Publishing, 2018.
D.C. Fowles, M.J. Christie, R. Edelbeli, W.W. Grings, D.T. Lykken, P.H. Venables, Recommendations for
electrodermal measurements, Psychophysiology 18 (1981) 232–239.
A. Fumal, J. Scohnen, Tension-type headache: current research and clinical management, Lancet Neurol. 7 (2008)
70–83.
Headache Classification Subcommittee of the International Headache Society, The International classification of
headache disorders: 2nd edition, Cephalalgia 24 (suppl 1) (2004) 37–43.
D.H. Holding, Principles of Training, third ed., Pergamon Press, Oxford, 1973.
B.S.P. Mishra, H. Das, S. Dehuri, A.K. Jagadev, Cloud Computing for Optimization: Foundations, Applications,
and Challenges, vol. 39, Springer, 2018.
J.W. Mullally, K. Hall, R. Goldstein, Efficacy of biofeedback in the treatment of migraine and tension type head-
aches, Pain Physician 12 (2009) 1005–1011.
Y. Nestoriuc, A. Martin, W. Rief, F. Andrasik, BF treatment for headache disorders: a comprehensive efficacy
review, Appl. Psychophysiol. Biofeedback 33 (2008) 125–140.
D.B. Penzien, J.C. Rains, G.L. Lipchik, T.L. Creer, Behavioral interventions for tension-type headache: overview
of current therapies and recommendation for a self-management model for chronic headache, Curr. Pain Headache
Rep. 8 (2004) 489–499.
C. Pradhan, H. Das, B. Naik, N. Dey, Handbook of Research on Information Security in Biomedical Signal
Processing. IGI Global, Hershey, PA, 2018, pp. 1–414, https://doi.org/10.4018/978-1-5225-5152-2.
K.H.K. Reddy, H. Das, D.S. Roy, A data aware scheme for scheduling big-data applications with SAVANNA
hadoop, in: Futures of Network, CRC Press, 2017.
A. Rubin, Biofeedback and binocular vision, J. Behav. Optom. 3 (4) (1992) 9598.
G.H. Sage, Introduction to Motor Behaviour: A Neuropsychological Approach, Addison Wesley, London, 1971.
R. Sahani, C. Rout, J.C. Badajena, A.K. Jena, H. Das, Classification of intrusion detection using data mining
techniques, in: Progress in Computing, Analytics and Networking, Springer, Singapore, 2018, pp. 753–764.
J. Schoenen, F. Boureau, R. Kunkel, et al., Guidelines for trials of drug treatments in tension-type headache.
First edition, Cephalalgia 15 (1995) 165–179.