Page 179 - Big Data Analytics for Intelligent Healthcare Management
P. 179

172     CHAPTER 6 CLASSIFICATION FRAMEWORK OF fMRI DATA






             REFERENCES
              [1] M.D. Fox, M.E. Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic res-
                 onance imaging, Nat. Rev. Neurosci. 8 (9) (2007) 700.
              [2] J.D. Van Horn, et al., The functional magnetic resonance imaging data center (fMRIDC): the challenges and
                 rewards of large–scale databasing of neuroimaging studies, Philos. Trans. R. Soc. Lond. B Biol. Sci.
                 356 (1412) (2001) 1323–1339.
              [3] S. Parida, S. Dehuri, S.-B. Cho, Machine learning approaches for cognitive state classification and brain
                 activity prediction: a survey, Curr. Bioinforma. 10 (4) (2015) 344–359.
              [4] L. Zhang, et al., Machine learning for clinical diagnosis from functional magnetic resonance imaging,
                 in: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference,
                 Vol. 1, IEEE, 2005.
              [5] A. L’heureux, et al., Machine learning with big data: challenges and approaches, IEEE Access 5 (2017)
                 7776–7797.
              [6] M. Misaki, et al., Comparison of multivariate classifiers and response normalizations for pattern-information
                 fMRI, NeuroImage 53 (1) (2010) 103–118.
              [7] D. Saidulu, R. Sasikala, Machine learning and statistical approaches for big data: issues, challenges and
                 research directions, Int. J. Appl. Eng. Res. 12 (21) (2017) 11691–11699.
              [8] A. Belle, et al., Big data analytics in healthcare, Biomed. Res. Int. 2015 (2015) 1–16.
              [9] D.M. Vock, et al., Adapting machine learning techniques to censored time-to-event health record data:
                 a general-purpose approach using inverse probability of censoring weighting, J. Biomed. Inform.
                 61 (2016) 119–131.
             [10] D. Ichikawa, T. Saito, H. Oyama, Impact of predicting health-guidance candidates using massive health
                 check-up data: a data-driven analysis, Int. J. Med. Inform. 106 (2017) 32–36.
             [11] T.V. Nguyen, B. Mirza, Dual-layer kernel extreme learning machine for action recognition, Neurocomputing
                 260 (2017) 123–130.
             [12] D. Ichikawa, et al., How can machine-learning methods assist in virtual screening for hyperuricemia?
                 A healthcare machine-learning approach, J. Biomed. Inform. 64 (2016) 20–24.
             [13] T. Zheng, et al., A machine learning-based framework to identify type 2 diabetes through electronic health
                 records, Int. J. Med. Inform. 97 (2017) 120–127.
             [14] M. Maniruzzaman, et al., Comparative approaches for classification of diabetes mellitus data: machine learn-
                 ing paradigm, Comput. Methods Prog. Biomed. 152 (2017) 23–34.
             [15] F. Mercaldo, V. Nardone, A. Santone, Diabetes mellitus affected patients classification and diagnosis through
                 machine learning techniques, Procedia Comput. Sci. 112 (2017) 2519–2528.
             [16] I. Kavakiotis, et al., Machine learning and data mining methods in diabetes research, Comput. Struct.
                 Biotechnol. J. 15 (2017) 104–116.
             [17] T. Watanabe, et al., Disease prediction based on functional connectomes using a scalable and spatially-
                 informed support vector machine, NeuroImage 96 (2014) 183–202.
             [18] O.Y. Al-Jarrah, et al., Efficient machine learning for big data: a review, Big Data Res. 2 (3) (2015) 87–93.
             [19] J.-E. Bibault, P. Giraud, A. Burgun, Big data and machine learning in radiation oncology: state of the art and
                 future prospects, Cancer Lett. 382 (1) (2016) 110–117.
             [20] L.R. Nair, S.D. Shetty, S.D. Shetty, Applying spark based machine learning model on streaming big data for
                 health status prediction, Comput. Electr. Eng. 65 (2018) 393–399.
             [21] L. Zhou, et al., Machine learning on big data: opportunities and challenges, Neurocomputing 237 (2017)
                 350–361.
                  ´
             [22] A.B. Herna ´ndez, et al., Using machine learning to optimize parallelism in big data applications, Futur. Gener.
                 Comput. Syst. 86 (2018) 1076–1092.
   174   175   176   177   178   179   180   181   182   183   184