Page 180 - Big Data Analytics for Intelligent Healthcare Management
P. 180
REFERENCES 173
[23] M. Behroozi, M.R. Daliri, H. Boyaci, Statistical analysis methods for the fMRI data, Basic Clin. Neurosci.
2 (4) (2011) 67–74.
[24] G.-R. Wu, et al., A blind deconvolution approach to recover effective connectivity brain networks from
resting state fMRI data, Med. Image Anal. 17 (3) (2013) 365–374.
[25] A. Lasek-Bal, J. Kidon, M. Blaszczyszyn, B. Stasio ´w, A. Zak, BOLD fMRI signal in stroke patients and its
importance for prognosis in the subacute disease period—preliminary report, Neurol. Neurochir. Pol. 52 (3)
(2018) 341–346.
[26] P.M. Matthews, A. Hampshire, Clinical concepts emerging from fMRI functional connectomics, Neuron
91 (3) (2016) 511–528.
[27] S.M. Kazan, et al., Vascular autorescaling of fMRI (VasA fMRI) improves sensitivity of population studies:
a pilot study, NeuroImage 124 (2016) 794–805.
[28] G. Varoquaux, et al., A group model for stable multi-subject ICA on fMRI datasets, NeuroImage 51 (1)
(2010) 288–299.
[29] V. Michel, et al., A supervised clustering approach for fMRI-based inference of brain states, Pattern Recogn.
45 (6) (2012) 2041–2049.
[30] A. Abraham, et al., Machine learning for neuroimaging with scikit-learn, Front. Neuroinform. 8 (2014) 14.
[31] Niels Væver Hartvig, Jens Ledet Jensen, Spatial mixture modeling of fMRI data, Hum. Brain Mapp. 11 (4)
(2000) 233–248.
[32] E.M.R. Lake, P. Bazzigaluppi, B. Stefanovic, Functional magnetic resonance imaging in chronic ischaemic
stroke, Philos. Trans. R. Soc. B 371 (1705) (2016) 20150353.
[33] A.E. Hassanien, N. Dey, S. Borra (Eds.), Medical Big Data and Internet of Medical Things: Advances,
Challenges and Applications, Taylor & Francis, 2019.
[34] N. Dey, C. Bhatt, A.S. Ashour, Big Data for Remote Sensing: Visualization, Analysis and Interpretation,
Springer, 2018.
[35] N. Dey et al., (Ed.), Internet of Things and Big Data Analytics Toward Next-Generation Intelligence,
Springer International Publishing, 2018.
[36] Y. Bhatt, C. Bhatt, Internet of things in healthcare, in: Internet of Things and Big Data Technologies for Next
Generation Health Care, Springer, Cham, 2017, pp. 13–33.
[37] M.S. Kamal, et al., De-Bruijn graph with map reduce framework towards metagenomic data classification,
Int. J. Inf. Technol. 9 (1) (2017) 59–75.
[38] R.K. Barik, et al., GeoFog4Health: a fog-based SDI framework for geospatial health big data analysis,
J. Ambient. Intell. Humaniz. Comput. 9 (48) (2018) 1–17.
[39] R. Barik, et al., Fog2fog: Augmenting scalability in fog computing for health GIS systems, in: Proceedings of
the Second IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineer-
ing Technologies, IEEE Press, 2017.
[40] R.K. Barik, H. Dubey, K. Mankodiya, Soa-fog: Secure service-oriented edge computing architecture
for smart health big data analytics, in: Signal and Information Processing (GlobalSIP), 2017 IEEE Global
Conference, IEEE, 2017.
[41] H. Das, B. Naik, H.S. Behera, Classification of diabetes mellitus disease (DMD): A data mining (DM)
approach, in: Progress in Computing, Analytics and Networking, Springer, Singapore, 2018, pp. 539–549.
[42] R. Sahani, et al., Classification of intrusion detection using data mining techniques, in: Progress in Comput-
ing, Analytics and Networking, Springer, Singapore, 2018, pp. 753–764.
[43] H. Das, et al., A novel PSO based back propagation learning-MLP (PSO-BP-MLP) for classification,
in: Computational Intelligence in Data Mining-Volume 2, Springer, New Delhi, 2015, pp. 461–471.
[44] C. Pradhan, et al., Handbook of Research on Information Security in Biomedical Signal Processing,
IGI Publishing, 2018.
[45] K.H.K. Reddy, H. Das, D.S. Roy, 18 a data aware scheme, in: Networks of the Future: Architectures,
Technologies, and Implementations, Taylor & Francis Group, 2017, p. 377.