Page 130 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 130
128 CHAPTER 5 Cell therapy
[3] M.E. Dudley, S.A. Rosenberg, Adoptive-cell-transfer therapy for the treatment of patients
with cancer, Nat. Rev. Cancer 3 (9) (2003) 666.
[4] M. Sadelain, I. Rivière, S. Riddell, Therapeutic T cell engineering, Nature 545 (7655)
(2017) 423.
[5] S.A. Rosenberg, N.P. Restifo, J.C. Yang, R.A. Morgan, M.E. Dudley, Adoptive cell trans-
fer: a clinical path to effective cancer immunotherapy, Nat. Rev. Cancer 8 (4) (2008) 299.
[6] S.A. Rosenberg, B.S. Packard, P.M. Aebersold, D. Solomon, S.L. Topalian, S.T. Toy, et al.
Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients
with metastatic melanoma. A preliminary report, New Engl. J. Med. 319 (1988) 1676–1680.
[7] S.A. Rosenberg, J.R. Yannelli, J.C. Yang, S.L. Topalian, D.J. Schwartzentruber, J.S. We-
ber, et al. Treatment of patients with metastatic melanoma with autologous tumor-infil-
trating lymphocytes and interleukin 2, J. Natl. Cancer Inst. 86 (1994) 1159–1166.
[8] S.A. Rosenberg, P. Aebersold, K. Cornetta, A. Kasid, R.A. Morgan, R. Moen, et al. Gene
transfer into humans—immunotherapy of patients with advance melanoma, using tumor-
infiltrating lymphocytes modified by retroviral gene transduction, New Engl. J. Med. 323
(1990) 570–578.
[9] C.H. June, Adoptive T cell therapy for cancer in the clinic, J. Clin. Investig. 117 (6)
(2007) 1466–1476.
[10] C.H. June, R.S. O’Connor, O.U. Kawalekar, S. Ghassemi, M.C. Milone, CAR T cell im-
munotherapy for human cancer, Science 359 (6382) (2018) 1361–1365.
[11] X. Wang, I. Rivière, Clinical manufacturing of CAR T cells: foundation of a promising
therapy, Mol. Ther. Oncolytics 3 (2016) 16015.
[12] C.H. June, M. Sadelain, Chimeric antigen receptor therapy, New Engl. J. Med. 379 (1)
(2018) 64–73.
[13] Y. Kuwana, Y. Asakura, N. Utsunomiya, M. Nakanishi, Y. Arata, S. Itoh, et al. Expres-
sion of chimeric receptor composed of immunoglobulin-derived V regions and T-cell
receptor-derived Cregions, Biochem. Biophys. Res. Commun. 149 (1987) 960–968.
[14] Z. Eshhar, T. Waks, G. Gross, D.G. Schindler, Specific activation and targeting of cy-
totoxic lymphocytes through chimeric single chains consisting of antibody-binding do-
mains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors, Proc.
Natl. Acad. Sci. USA 90 (1993) 720–724.
[15] J.H. Park, I. Rivière, M. Gonen, X. Wang, B. Sénéchal, K.J. Curran, et al. Long-term
follow-up of CD19 CAR therapy in acute lymphoblastic leukemia, New Engl. J. Med.
378 (5) (2018) 449–459.
[16] J.N. Kochenderfer, M.E. Dudley, S.H. Kassim, R.P. Somerville, R.O. Carpenter, M.
Stetler-Stevenson, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and in-
dolent B-cell malignancies can be effectively treated with autologous T cells expressing
an anti-CD19 chimeric antigen receptor, J. Clin. Oncol. 33 (6) (2015) 540.
[17] S.B. Stephan, A.M. Taber, I. Jileaeva, E.P. Pegues, C.L. Sentman, M.T. Stephan, Bio-
polymer implants enhance the efficacy of adoptive T-cell therapy, Nat. Biotechnol. 33 (1)
(2015) 97.
[18] H. Hasegawa, T. Matsumoto, Mechanisms of tolerance induction by dendritic cells in
vivo, Front. Immunol. 9 (2018) 350.
[19] A. Gardner, B. Ruffell, Dendritic cells and cancer immunity, Trends Immunol. 37 (12)
(2016) 855–865.
[20] W.W. Van Willigen, M. Bloemendal, W.R. Gerritsen, G. Schreibelt, I.J.M. de Vries, K.F.
Bol, Dendritic cell cancer therapy: vaccinating the right patient at the righttime, Front.
Immunol. 9 (2018) 2265, doi: 10.3389/fimmu.2018.02265.