Page 180 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 180
178 CHAPTER 7 Application of magnetic and electric fields for cancer therapy
[7] C. Sun, J.S. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery,
Adv. Drug Deliv. Rev. 60 (11) (2008) 1252–1265.
[8] J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic
nanoparticles and targeted drug delivering, Pharmacol. Res. 62 (2) (2010) 144–149.
[9] R. Fernández-Pacheco, J.G. Valdivia, M.R. Ibarra, Magnetic nanoparticles for local drug
delivery using magnetic implants, Micro and Nano Technologies in Bioanalysis, Humana
Press, Totowa, NJ, 2009, pp. 559–569.
[10] A. Nacev, C. Beni, O. Bruno, B. Shapiro, The behaviors of ferromagnetic nano-particles
in and around blood vessels under applied magnetic fields, J. Magn. Magn. Mater. 323 (6)
(2011) 651–668.
[11] L.F. Gamarra, W.M. Pontuschka, E. Amaro Jr., A.J.D. Costa-Filho, G.E.D.S. Brito, E.D.
Vieira, et al. Kinetics of elimination and distribution in blood and liver of biocompatible
ferrofluids based on Fe O nanoparticles: an EPR and XRF study, Mater. Sci. Eng. C 28
3
4
(4) (2008) 519–525.
[12] M.A. Dobrovolskaia, A.K. Patri, J. Simak, J.B. Hall, J. Semberova, S.H. De Paoli Lac-
erda, S.E. McNeil, Nanoparticle size and surface charge determine effects of PAMAM
dendrimers on human platelets in vitro, Mol. Pharm. 9 (3) (2011) 382–393.
[13] B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, V.C. Yang, Iron
oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of
brain tumors, Biomaterials 29 (4) (2008) 487–496.
[14] CICLO, XXIII, Biomedical Applications of Electromagnetic Fields: Human Exposure,
Hyperthermia and Cellular Stimulation, Universita’ Di Padova Facolta’ Di Ingegneria,
Dipartimento di Ingegneria dell’Informazione, Scuola di Dottorato di Ricerca in Ingeg-
neria dell’Informazione Indirizzo: Bioingegneria, 2012.
[15] R. Fitzpatrick, Maxwell’s Equations and the Principles of Electromagnetism, Jones &
Bartlett Publishers, (2008).
[16] R. Fitzpatrick, Maxwell’s Equations and the Principles of Electromagnetism, Jones &
Bartlett Publishers, (2008).
[17] C.S. Brazel, Magnetothermally-responsive nanomaterials: combining magnetic nano-
structures and thermally-sensitive polymers for triggered drug release, Pharm. Res. 26
(3) (2009) 644–656.
[18] M.R. Dreher, W. Liu, C.R. Michelich, M.W. Dewhirst, F. Yuan, A. Chilkoti, Tumor vascu-
lar permeability, accumulation, and penetration of macromolecular drug carriers, J. Natl.
Cancer Inst. 98 (5) (2006) 335–344.
[19] T. Stylianopoulos, M.Z. Poh, N. Insin, M.G. Bawendi, D. Fukumura, L.L. Munn, R.K.
Jain, Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic
interactions, Biophys. J. 99 (5) (2010) 1342–1349.
[20] J.D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle
systems in cancer therapeutics, Adv. Drug Deliv. Rev. 60 (15) (2008) 1615–1626.
[21] Q. Cao, X. Han, L. Li, Enhancement of the efficiency of magnetic targeting for drug
delivery: development and evaluation of magnet system, J. Magn. Magn. Mater. 323 (15)
(2011) 1919–1924.
[22] J. Berthier, P. Silberzan, Microfluidics for Biotechnology, Artech House, (2006).
[23] Q. Wang, Z.S. Deng, J. Liu, Theoretical evaluations of magnetic nanoparticle-enhanced
heating on tumor embedded with large blood vessels during hyperthermia, J. Nanopart.
Res. 14 (7) (2012) 974.
[24] L. Rast, J.G. Harrison, Computational modeling of electromagnetically induced heating
of magnetic nanoparticle materials for hyperthermic cancer treatment, PIERS Online 6
(7) (2010) 690–694.